interest_aggregation.py
14.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
兴趣点聚合索引生成
按照多个维度(平台、国家、客户类型、分类、列表类型)生成商品索引
"""
import pandas as pd
import math
import os
import argparse
import json
from datetime import datetime, timedelta
from collections import defaultdict, Counter
from db_service import create_db_connection
from config.offline_config import (
DB_CONFIG, OUTPUT_DIR, INTEREST_AGGREGATION_CONFIG, get_time_range,
DEFAULT_LOOKBACK_DAYS, DEFAULT_RECENT_DAYS, DEFAULT_INTEREST_TOP_N
)
from scripts.debug_utils import (
setup_debug_logger, log_dataframe_info, log_dict_stats,
save_readable_index, fetch_name_mappings, log_algorithm_params,
log_processing_step
)
def calculate_time_weight(event_time, reference_time, decay_factor=0.95, days_unit=30):
"""
计算时间衰减权重
Args:
event_time: 事件发生时间
reference_time: 参考时间(当前时间)
decay_factor: 衰减因子
days_unit: 衰减单位(天)
Returns:
时间权重
"""
if pd.isna(event_time):
return 1.0
time_diff = (reference_time - event_time).days
if time_diff < 0:
return 1.0
# 计算衰减权重
periods = time_diff / days_unit
weight = math.pow(decay_factor, periods)
return weight
def aggregate_by_dimensions(df, behavior_weights, time_decay=True, decay_factor=0.95):
"""
按多维度聚合商品
Args:
df: DataFrame with necessary columns
behavior_weights: 行为权重字典
time_decay: 是否使用时间衰减
decay_factor: 时间衰减因子
Returns:
Dict: {dimension_key: {item_id: score}}
"""
reference_time = datetime.now()
# 添加行为权重
df['behavior_weight'] = df['event_type'].map(behavior_weights).fillna(1.0)
# 添加时间权重
if time_decay:
df['time_weight'] = df['create_time'].apply(
lambda x: calculate_time_weight(x, reference_time, decay_factor)
)
else:
df['time_weight'] = 1.0
# 计算最终权重
df['final_weight'] = df['behavior_weight'] * df['time_weight']
# 初始化聚合结果
aggregations = defaultdict(lambda: defaultdict(float))
# 遍历数据,按不同维度聚合
for _, row in df.iterrows():
item_id = row['item_id']
weight = row['final_weight']
# 维度1: 业务平台 (business_platform)
if pd.notna(row.get('platform')):
key = f"platform:{row['platform']}"
aggregations[key][item_id] += weight
# 维度2: 客户端平台 (client_platform)
if pd.notna(row.get('client_platform')):
key = f"client_platform:{row['client_platform']}"
aggregations[key][item_id] += weight
# 维度3: 供应商 (supplier_id)
if pd.notna(row.get('supplier_id')):
key = f"supplier:{row['supplier_id']}"
aggregations[key][item_id] += weight
# 维度4: 一级分类 (category_level1)
if pd.notna(row.get('category_level1_id')):
key = f"category_level1:{row['category_level1_id']}"
aggregations[key][item_id] += weight
# 维度5: 二级分类 (category_level2)
if pd.notna(row.get('category_level2_id')):
key = f"category_level2:{row['category_level2_id']}"
aggregations[key][item_id] += weight
# 维度6: 三级分类 (category_level3)
if pd.notna(row.get('category_level3_id')):
key = f"category_level3:{row['category_level3_id']}"
aggregations[key][item_id] += weight
# 维度7: 四级分类 (category_level4)
if pd.notna(row.get('category_level4_id')):
key = f"category_level4:{row['category_level4_id']}"
aggregations[key][item_id] += weight
# 组合维度: 业务平台 + 客户端平台
if pd.notna(row.get('platform')) and pd.notna(row.get('client_platform')):
key = f"platform_client:{row['platform']}_{row['client_platform']}"
aggregations[key][item_id] += weight
# 组合维度: 平台 + 二级分类
if pd.notna(row.get('platform')) and pd.notna(row.get('category_level2_id')):
key = f"platform_category2:{row['platform']}_{row['category_level2_id']}"
aggregations[key][item_id] += weight
# 组合维度: 平台 + 三级分类
if pd.notna(row.get('platform')) and pd.notna(row.get('category_level3_id')):
key = f"platform_category3:{row['platform']}_{row['category_level3_id']}"
aggregations[key][item_id] += weight
# 组合维度: 客户端平台 + 二级分类
if pd.notna(row.get('client_platform')) and pd.notna(row.get('category_level2_id')):
key = f"client_category2:{row['client_platform']}_{row['category_level2_id']}"
aggregations[key][item_id] += weight
return aggregations
def generate_list_type_indices(df_hot, df_cart, df_new, behavior_weights):
"""
生成不同列表类型的索引(热门、加购、新品)
Args:
df_hot: 热门商品数据
df_cart: 加购商品数据
df_new: 新品数据
behavior_weights: 行为权重
Returns:
Dict: {list_type: aggregations}
"""
list_type_indices = {}
# 热门商品索引
if not df_hot.empty:
print("Generating hot item indices...")
# B2B低频场景,不使用时间衰减
list_type_indices['hot'] = aggregate_by_dimensions(
df_hot, behavior_weights, time_decay=False
)
# 加购商品索引
if not df_cart.empty:
print("Generating cart item indices...")
# B2B低频场景,不使用时间衰减
list_type_indices['cart'] = aggregate_by_dimensions(
df_cart, behavior_weights, time_decay=False
)
# 新品索引
if not df_new.empty:
print("Generating new item indices...")
# 新品不使用时间衰减,因为新品本身就是时间敏感的
list_type_indices['new'] = aggregate_by_dimensions(
df_new, behavior_weights, time_decay=False
)
return list_type_indices
def output_indices(aggregations, output_prefix, top_n=1000):
"""
输出索引到文件
Args:
aggregations: 聚合结果 {dimension_key: {item_id: score}}
output_prefix: 输出文件前缀
top_n: 每个维度输出前N个商品
"""
output_file = os.path.join(OUTPUT_DIR, f'{output_prefix}_{datetime.now().strftime("%Y%m%d")}.txt')
print(f"Writing indices to {output_file}...")
with open(output_file, 'w', encoding='utf-8') as f:
for dim_key, items in aggregations.items():
# 按分数排序,取前N个
sorted_items = sorted(items.items(), key=lambda x: -x[1])[:top_n]
if not sorted_items:
continue
# 格式:dimension_key \t item_id1:score1,item_id2:score2,...
items_str = ','.join([f'{item_id}:{score:.4f}' for item_id, score in sorted_items])
f.write(f'{dim_key}\t{items_str}\n')
print(f"Output saved to: {output_file}")
print(f"Generated indices for {len(aggregations)} dimension keys")
def main():
parser = argparse.ArgumentParser(description='Generate interest aggregation indices')
parser.add_argument('--top_n', type=int, default=DEFAULT_INTEREST_TOP_N,
help=f'Top N items per dimension (default: {DEFAULT_INTEREST_TOP_N})')
parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
parser.add_argument('--recent_days', type=int, default=DEFAULT_RECENT_DAYS,
help=f'Recent days for hot items (default: {DEFAULT_RECENT_DAYS})')
parser.add_argument('--new_days', type=int, default=DEFAULT_RECENT_DAYS,
help=f'Days for new items (default: {DEFAULT_RECENT_DAYS})')
parser.add_argument('--decay_factor', type=float, default=INTEREST_AGGREGATION_CONFIG['time_decay_factor'],
help='Time decay factor')
parser.add_argument('--output_prefix', type=str, default='interest_aggregation',
help='Output file prefix')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode with detailed logging and readable output')
args = parser.parse_args()
# 设置logger
logger = setup_debug_logger('interest_aggregation', debug=args.debug)
# 记录算法参数
params = {
'top_n': args.top_n,
'lookback_days': args.lookback_days,
'recent_days': args.recent_days,
'new_days': args.new_days,
'decay_factor': args.decay_factor,
'debug': args.debug
}
log_algorithm_params(logger, params)
# 创建数据库连接
logger.info("连接数据库...")
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
# 获取时间范围
start_date, end_date = get_time_range(args.lookback_days)
recent_start_date, _ = get_time_range(args.recent_days)
new_start_date, _ = get_time_range(args.new_days)
logger.info(f"获取数据范围:{start_date} 到 {end_date}")
logger.debug(f"热门商品起始日期:{recent_start_date}")
logger.debug(f"新品起始日期:{new_start_date}")
# SQL查询 - 获取用户行为数据(包含用户特征和商品分类)
sql_query = f"""
SELECT
se.anonymous_id AS user_id,
se.item_id,
se.event AS event_type,
se.create_time,
pgs.name AS item_name,
pgs.create_time AS item_create_time,
se.business_platform AS platform,
se.client_platform,
pg.supplier_id,
pg.category_id,
pc_1.id as category_level1_id,
pc_2.id as category_level2_id,
pc_3.id as category_level3_id,
pc_4.id as category_level4_id
FROM
sensors_events se
LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
LEFT JOIN prd_goods pg ON pg.id = pgs.goods_id
LEFT JOIN prd_category as pc ON pc.id = pg.category_id
LEFT JOIN prd_category AS pc_1 ON pc_1.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 2), '.', -1)
LEFT JOIN prd_category AS pc_2 ON pc_2.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 3), '.', -1)
LEFT JOIN prd_category AS pc_3 ON pc_3.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 4), '.', -1)
LEFT JOIN prd_category AS pc_4 ON pc_4.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 5), '.', -1)
WHERE
se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{start_date}'
AND se.create_time <= '{end_date}'
AND se.item_id IS NOT NULL
ORDER BY
se.create_time
"""
logger.info("执行SQL查询...")
df = pd.read_sql(sql_query, engine)
logger.info(f"获取到 {len(df)} 条记录")
# 记录数据信息
log_dataframe_info(logger, df, "用户行为数据")
# 转换时间列
df['create_time'] = pd.to_datetime(df['create_time'])
df['item_create_time'] = pd.to_datetime(df['item_create_time'], errors='coerce')
# 定义行为权重
behavior_weights = INTEREST_AGGREGATION_CONFIG['behavior_weights']
logger.debug(f"行为权重: {behavior_weights}")
# 准备不同类型的数据集
log_processing_step(logger, "准备不同类型的数据集")
# 1. 热门商品:最近N天的高交互商品
df_hot = df[df['create_time'] >= recent_start_date].copy()
logger.info(f"热门商品数据集:{len(df_hot)} 条记录")
# 2. 加购商品:加购行为
df_cart = df[df['event_type'].isin(['addToCart', 'addToPool'])].copy()
logger.info(f"加购商品数据集:{len(df_cart)} 条记录")
# 3. 新品:商品创建时间在最近N天内
df_new = df[df['item_create_time'] >= new_start_date].copy()
logger.info(f"新品数据集:{len(df_new)} 条记录")
# 生成不同列表类型的索引
log_processing_step(logger, "生成不同列表类型的索引")
list_type_indices = generate_list_type_indices(
df_hot, df_cart, df_new, behavior_weights
)
logger.info(f"生成了 {len(list_type_indices)} 种列表类型的索引")
# 获取name mappings用于debug输出
name_mappings = {}
if args.debug:
logger.info("获取物品名称映射...")
name_mappings = fetch_name_mappings(engine, debug=True)
# 输出索引
log_processing_step(logger, "保存索引文件")
for list_type, aggregations in list_type_indices.items():
output_prefix = f'{args.output_prefix}_{list_type}'
logger.info(f"保存 {list_type} 类型的索引...")
output_indices(aggregations, output_prefix, top_n=args.top_n)
# 如果启用debug模式,保存可读格式
if args.debug and aggregations:
for dim_key, items in aggregations.items():
if items:
# 为每个维度生成可读索引 - 先排序再取前N个
sorted_items = sorted(items.items(), key=lambda x: -x[1])[:args.top_n]
result_dict = {dim_key: sorted_items}
output_file = os.path.join(OUTPUT_DIR, f'{output_prefix}_{dim_key}_{datetime.now().strftime("%Y%m%d")}.txt')
if os.path.exists(output_file):
save_readable_index(
output_file,
result_dict,
name_mappings,
description=f'interest:{list_type}:{dim_key}'
)
# 生成全局索引(所有数据)
log_processing_step(logger, "生成全局索引")
# B2B低频场景,不使用时间衰减
global_aggregations = aggregate_by_dimensions(
df, behavior_weights, time_decay=False, decay_factor=args.decay_factor
)
logger.info("保存全局索引...")
output_indices(global_aggregations, f'{args.output_prefix}_global', top_n=args.top_n)
logger.info("="*80)
logger.info("所有索引生成完成!")
logger.info("="*80)
if __name__ == '__main__':
main()