i2i_deepwalk.py
14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""
i2i - DeepWalk算法实现
基于用户-物品图结构训练DeepWalk模型,获取物品向量相似度
复用 graphembedding/deepwalk/ 的高效实现
"""
import pandas as pd
import argparse
import os
from datetime import datetime
from collections import defaultdict
from gensim.models import Word2Vec
from db_service import create_db_connection
from config.offline_config import (
DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
)
from scripts.debug_utils import (
setup_debug_logger, log_dataframe_info,
save_readable_index, fetch_name_mappings, log_algorithm_params,
log_processing_step
)
# 导入 DeepWalk 实现
from deepwalk.deepwalk import DeepWalk
def build_edge_file_from_db(df, behavior_weights, output_path, logger):
"""
从数据库数据构建边文件
边文件格式: item_id \t neighbor_id1:weight1,neighbor_id2:weight2,...
Args:
df: DataFrame with columns: user_id, item_id, event_type
behavior_weights: 行为权重字典
output_path: 边文件输出路径
logger: 日志对象
"""
logger.info("开始构建物品图...")
# 构建用户-物品列表
user_items = defaultdict(list)
for _, row in df.iterrows():
user_id = row['user_id']
item_id = str(row['item_id'])
event_type = row['event_type']
weight = behavior_weights.get(event_type, 1.0)
user_items[user_id].append((item_id, weight))
logger.info(f"共有 {len(user_items)} 个用户")
# 构建物品图边
edge_dict = defaultdict(lambda: defaultdict(float))
for user_id, items in user_items.items():
# 限制每个用户的物品数量,避免内存爆炸
if len(items) > 100:
# 按权重排序,只保留前100个
items = sorted(items, key=lambda x: -x[1])[:100]
# 物品两两组合,构建边
for i in range(len(items)):
item_i, weight_i = items[i]
for j in range(i + 1, len(items)):
item_j, weight_j = items[j]
# 边的权重为两个物品权重的平均值
edge_weight = (weight_i + weight_j) / 2.0
edge_dict[item_i][item_j] += edge_weight
edge_dict[item_j][item_i] += edge_weight
logger.info(f"构建物品图完成,共 {len(edge_dict)} 个节点")
# 保存边文件
logger.info(f"保存边文件到 {output_path}")
with open(output_path, 'w', encoding='utf-8') as f:
for item_id, neighbors in edge_dict.items():
neighbor_str = ','.join([f'{nbr}:{weight:.4f}' for nbr, weight in neighbors.items()])
f.write(f'{item_id}\t{neighbor_str}\n')
logger.info(f"边文件保存完成")
return len(edge_dict)
def train_word2vec_from_walks(walks_file, config, logger):
"""
从游走文件训练Word2Vec模型
Args:
walks_file: 游走序列文件路径
config: Word2Vec配置
logger: 日志对象
Returns:
Word2Vec模型
"""
logger.info(f"从 {walks_file} 读取游走序列...")
# 读取游走序列
sentences = []
with open(walks_file, 'r', encoding='utf-8') as f:
for line in f:
walk = line.strip().split()
if len(walk) >= 2:
sentences.append(walk)
logger.info(f"共读取 {len(sentences)} 条游走序列")
# 训练Word2Vec
logger.info("开始训练Word2Vec模型...")
model = Word2Vec(
sentences=sentences,
vector_size=config['vector_size'],
window=config['window_size'],
min_count=config['min_count'],
workers=config['workers'],
sg=config['sg'],
epochs=config['epochs'],
seed=42
)
logger.info(f"训练完成。词汇表大小:{len(model.wv)}")
return model
def generate_similarities(model, top_n, logger):
"""
从Word2Vec模型生成物品相似度
Args:
model: Word2Vec模型
top_n: Top N similar items
logger: 日志对象
Returns:
Dict[item_id, List[Tuple(similar_item_id, score)]]
"""
logger.info("生成相似度...")
result = {}
for item_id in model.wv.index_to_key:
try:
similar_items = model.wv.most_similar(item_id, topn=top_n)
result[item_id] = [(sim_id, float(score)) for sim_id, score in similar_items]
except KeyError:
continue
logger.info(f"为 {len(result)} 个物品生成了相似度")
return result
def save_results(result, output_file, name_mappings, logger):
"""
保存相似度结果到文件
Args:
result: 相似度字典
output_file: 输出文件路径
name_mappings: ID到名称的映射
logger: 日志对象
"""
logger.info(f"保存结果到 {output_file}...")
with open(output_file, 'w', encoding='utf-8') as f:
for item_id, sims in result.items():
# 获取物品名称
item_name = name_mappings.get(int(item_id), 'Unknown') if item_id.isdigit() else 'Unknown'
if not sims:
continue
# 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in sims])
f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
logger.info(f"结果保存完成")
def main():
parser = argparse.ArgumentParser(description='Run DeepWalk for i2i similarity')
parser.add_argument('--num_walks', type=int, default=I2I_CONFIG['deepwalk']['num_walks'],
help='Number of walks per node')
parser.add_argument('--walk_length', type=int, default=I2I_CONFIG['deepwalk']['walk_length'],
help='Walk length')
parser.add_argument('--window_size', type=int, default=I2I_CONFIG['deepwalk']['window_size'],
help='Window size for Word2Vec')
parser.add_argument('--vector_size', type=int, default=I2I_CONFIG['deepwalk']['vector_size'],
help='Vector size for Word2Vec')
parser.add_argument('--min_count', type=int, default=I2I_CONFIG['deepwalk']['min_count'],
help='Minimum word count')
parser.add_argument('--workers', type=int, default=I2I_CONFIG['deepwalk']['workers'],
help='Number of workers')
parser.add_argument('--epochs', type=int, default=I2I_CONFIG['deepwalk']['epochs'],
help='Number of epochs')
parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
parser.add_argument('--output', type=str, default=None,
help='Output file path')
parser.add_argument('--save_model', action='store_true',
help='Save Word2Vec model')
parser.add_argument('--save_graph', action='store_true',
help='Save graph edge file')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode with detailed logging and readable output')
parser.add_argument('--use_softmax', action='store_true',
help='Use softmax-based alias sampling (default: False)')
parser.add_argument('--temperature', type=float, default=1.0,
help='Temperature for softmax (default: 1.0)')
args = parser.parse_args()
# 设置logger
logger = setup_debug_logger('i2i_deepwalk', debug=args.debug)
# 记录算法参数
params = {
'num_walks': args.num_walks,
'walk_length': args.walk_length,
'window_size': args.window_size,
'vector_size': args.vector_size,
'min_count': args.min_count,
'workers': args.workers,
'epochs': args.epochs,
'top_n': args.top_n,
'lookback_days': args.lookback_days,
'debug': args.debug,
'use_softmax': args.use_softmax,
'temperature': args.temperature
}
log_algorithm_params(logger, params)
# 创建临时目录
temp_dir = os.path.join(OUTPUT_DIR, 'temp')
os.makedirs(temp_dir, exist_ok=True)
date_str = datetime.now().strftime('%Y%m%d')
edge_file = os.path.join(temp_dir, f'item_graph_{date_str}.txt')
walks_file = os.path.join(temp_dir, f'walks_{date_str}.txt')
# ============================================================
# 步骤1: 从数据库获取数据并构建边文件
# ============================================================
log_processing_step(logger, "从数据库获取数据")
# 创建数据库连接
logger.info("连接数据库...")
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
# 获取时间范围
start_date, end_date = get_time_range(args.lookback_days)
logger.info(f"获取数据范围:{start_date} 到 {end_date}")
# SQL查询 - 获取用户行为数据
sql_query = f"""
SELECT
se.anonymous_id AS user_id,
se.item_id,
se.event AS event_type,
pgs.name AS item_name
FROM
sensors_events se
LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
WHERE
se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{start_date}'
AND se.create_time <= '{end_date}'
AND se.item_id IS NOT NULL
AND se.anonymous_id IS NOT NULL
"""
logger.info("执行SQL查询...")
df = pd.read_sql(sql_query, engine)
logger.info(f"获取到 {len(df)} 条记录")
# 确保ID为整数类型
df['item_id'] = df['item_id'].astype(int)
df['user_id'] = df['user_id'].astype(str)
# 记录数据信息
log_dataframe_info(logger, df, "用户行为数据")
# 定义行为权重
behavior_weights = {
'click': 1.0,
'contactFactory': 5.0,
'addToPool': 2.0,
'addToCart': 3.0,
'purchase': 10.0
}
logger.debug(f"行为权重: {behavior_weights}")
# 构建边文件
log_processing_step(logger, "构建边文件")
num_nodes = build_edge_file_from_db(df, behavior_weights, edge_file, logger)
# ============================================================
# 步骤2: 使用DeepWalk进行随机游走
# ============================================================
log_processing_step(logger, "执行DeepWalk随机游走")
logger.info("初始化DeepWalk...")
deepwalk = DeepWalk(
edge_file=edge_file,
node_tag_file=None, # 不使用标签游走
use_softmax=args.use_softmax,
temperature=args.temperature,
p_tag_walk=0.0 # 不使用标签游走
)
logger.info("开始随机游走...")
deepwalk.simulate_walks(
num_walks=args.num_walks,
walk_length=args.walk_length,
workers=args.workers,
output_file=walks_file
)
# ============================================================
# 步骤3: 训练Word2Vec模型
# ============================================================
log_processing_step(logger, "训练Word2Vec模型")
w2v_config = {
'vector_size': args.vector_size,
'window_size': args.window_size,
'min_count': args.min_count,
'workers': args.workers,
'epochs': args.epochs,
'sg': 1 # Skip-gram
}
logger.debug(f"Word2Vec配置: {w2v_config}")
model = train_word2vec_from_walks(walks_file, w2v_config, logger)
# 保存模型(可选)
if args.save_model:
model_path = os.path.join(OUTPUT_DIR, f'deepwalk_model_{date_str}.model')
model.save(model_path)
logger.info(f"模型已保存到 {model_path}")
# ============================================================
# 步骤4: 生成相似度
# ============================================================
log_processing_step(logger, "生成相似度")
result = generate_similarities(model, args.top_n, logger)
# ============================================================
# 步骤5: 保存结果
# ============================================================
log_processing_step(logger, "保存结果")
output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_deepwalk_{date_str}.txt')
# 获取name mappings
name_mappings = {}
if args.debug:
logger.info("获取物品名称映射...")
name_mappings = fetch_name_mappings(engine, debug=True)
save_results(result, output_file, name_mappings, logger)
logger.info(f"✓ DeepWalk完成!")
logger.info(f" - 输出文件: {output_file}")
logger.info(f" - 商品数: {len(result)}")
if result:
avg_sims = sum(len(sims) for sims in result.values()) / len(result)
logger.info(f" - 平均相似商品数: {avg_sims:.1f}")
# 如果启用debug模式,保存可读格式
if args.debug:
log_processing_step(logger, "保存Debug可读格式")
save_readable_index(
output_file,
result,
name_mappings,
description='i2i:deepwalk'
)
# 清理临时文件(可选)
if not args.save_graph:
if os.path.exists(edge_file):
os.remove(edge_file)
logger.debug(f"已删除临时文件: {edge_file}")
if os.path.exists(walks_file):
os.remove(walks_file)
logger.debug(f"已删除临时文件: {walks_file}")
print(f"✓ DeepWalk相似度计算完成")
print(f" - 输出文件: {output_file}")
print(f" - 商品数: {len(result)}")
if __name__ == '__main__':
main()