i2i_deepwalk.py 14 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
"""
i2i - DeepWalk算法实现
基于用户-物品图结构训练DeepWalk模型,获取物品向量相似度
复用 graphembedding/deepwalk/ 的高效实现
"""
import pandas as pd
import argparse
import os
from datetime import datetime
from collections import defaultdict
from gensim.models import Word2Vec
from db_service import create_db_connection
from config.offline_config import (
    DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
    DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
)
from scripts.debug_utils import (
    setup_debug_logger, log_dataframe_info,
    save_readable_index, fetch_name_mappings, log_algorithm_params,
    log_processing_step
)

# 导入 DeepWalk 实现
from deepwalk.deepwalk import DeepWalk


def build_edge_file_from_db(df, behavior_weights, output_path, logger):
    """
    从数据库数据构建边文件
    边文件格式: item_id \t neighbor_id1:weight1,neighbor_id2:weight2,...
    
    Args:
        df: DataFrame with columns: user_id, item_id, event_type
        behavior_weights: 行为权重字典
        output_path: 边文件输出路径
        logger: 日志对象
    """
    logger.info("开始构建物品图...")
    
    # 构建用户-物品列表
    user_items = defaultdict(list)
    
    for _, row in df.iterrows():
        user_id = row['user_id']
        item_id = str(row['item_id'])
        event_type = row['event_type']
        weight = behavior_weights.get(event_type, 1.0)
        user_items[user_id].append((item_id, weight))
    
    logger.info(f"共有 {len(user_items)} 个用户")
    
    # 构建物品图边
    edge_dict = defaultdict(lambda: defaultdict(float))
    
    for user_id, items in user_items.items():
        # 限制每个用户的物品数量,避免内存爆炸
        if len(items) > 100:
            # 按权重排序,只保留前100个
            items = sorted(items, key=lambda x: -x[1])[:100]
        
        # 物品两两组合,构建边
        for i in range(len(items)):
            item_i, weight_i = items[i]
            for j in range(i + 1, len(items)):
                item_j, weight_j = items[j]
                
                # 边的权重为两个物品权重的平均值
                edge_weight = (weight_i + weight_j) / 2.0
                edge_dict[item_i][item_j] += edge_weight
                edge_dict[item_j][item_i] += edge_weight
    
    logger.info(f"构建物品图完成,共 {len(edge_dict)} 个节点")
    
    # 保存边文件
    logger.info(f"保存边文件到 {output_path}")
    with open(output_path, 'w', encoding='utf-8') as f:
        for item_id, neighbors in edge_dict.items():
            neighbor_str = ','.join([f'{nbr}:{weight:.4f}' for nbr, weight in neighbors.items()])
            f.write(f'{item_id}\t{neighbor_str}\n')
    
    logger.info(f"边文件保存完成")
    return len(edge_dict)


def train_word2vec_from_walks(walks_file, config, logger):
    """
    从游走文件训练Word2Vec模型
    
    Args:
        walks_file: 游走序列文件路径
        config: Word2Vec配置
        logger: 日志对象
    
    Returns:
        Word2Vec模型
    """
    logger.info(f"从 {walks_file} 读取游走序列...")
    
    # 读取游走序列
    sentences = []
    with open(walks_file, 'r', encoding='utf-8') as f:
        for line in f:
            walk = line.strip().split()
            if len(walk) >= 2:
                sentences.append(walk)
    
    logger.info(f"共读取 {len(sentences)} 条游走序列")
    
    # 训练Word2Vec
    logger.info("开始训练Word2Vec模型...")
    model = Word2Vec(
        sentences=sentences,
        vector_size=config['vector_size'],
        window=config['window_size'],
        min_count=config['min_count'],
        workers=config['workers'],
        sg=config['sg'],
        epochs=config['epochs'],
        seed=42
    )
    
    logger.info(f"训练完成。词汇表大小:{len(model.wv)}")
    return model


def generate_similarities(model, top_n, logger):
    """
    从Word2Vec模型生成物品相似度
    
    Args:
        model: Word2Vec模型
        top_n: Top N similar items
        logger: 日志对象
    
    Returns:
        Dict[item_id, List[Tuple(similar_item_id, score)]]
    """
    logger.info("生成相似度...")
    result = {}
    
    for item_id in model.wv.index_to_key:
        try:
            similar_items = model.wv.most_similar(item_id, topn=top_n)
            result[item_id] = [(sim_id, float(score)) for sim_id, score in similar_items]
        except KeyError:
            continue
    
    logger.info(f"为 {len(result)} 个物品生成了相似度")
    return result


def save_results(result, output_file, name_mappings, logger):
    """
    保存相似度结果到文件
    
    Args:
        result: 相似度字典
        output_file: 输出文件路径
        name_mappings: ID到名称的映射
        logger: 日志对象
    """
    logger.info(f"保存结果到 {output_file}...")
    
    with open(output_file, 'w', encoding='utf-8') as f:
        for item_id, sims in result.items():
            # 获取物品名称
            item_name = name_mappings.get(int(item_id), 'Unknown') if item_id.isdigit() else 'Unknown'
            
            if not sims:
                continue
            
            # 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
            sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in sims])
            f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
    
    logger.info(f"结果保存完成")


def main():
    parser = argparse.ArgumentParser(description='Run DeepWalk for i2i similarity')
    parser.add_argument('--num_walks', type=int, default=I2I_CONFIG['deepwalk']['num_walks'],
                       help='Number of walks per node')
    parser.add_argument('--walk_length', type=int, default=I2I_CONFIG['deepwalk']['walk_length'],
                       help='Walk length')
    parser.add_argument('--window_size', type=int, default=I2I_CONFIG['deepwalk']['window_size'],
                       help='Window size for Word2Vec')
    parser.add_argument('--vector_size', type=int, default=I2I_CONFIG['deepwalk']['vector_size'],
                       help='Vector size for Word2Vec')
    parser.add_argument('--min_count', type=int, default=I2I_CONFIG['deepwalk']['min_count'],
                       help='Minimum word count')
    parser.add_argument('--workers', type=int, default=I2I_CONFIG['deepwalk']['workers'],
                       help='Number of workers')
    parser.add_argument('--epochs', type=int, default=I2I_CONFIG['deepwalk']['epochs'],
                       help='Number of epochs')
    parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
                       help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
    parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
                       help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
    parser.add_argument('--output', type=str, default=None,
                       help='Output file path')
    parser.add_argument('--save_model', action='store_true',
                       help='Save Word2Vec model')
    parser.add_argument('--save_graph', action='store_true',
                       help='Save graph edge file')
    parser.add_argument('--debug', action='store_true',
                       help='Enable debug mode with detailed logging and readable output')
    parser.add_argument('--use_softmax', action='store_true',
                       help='Use softmax-based alias sampling (default: False)')
    parser.add_argument('--temperature', type=float, default=1.0,
                       help='Temperature for softmax (default: 1.0)')
    
    args = parser.parse_args()
    
    # 设置logger
    logger = setup_debug_logger('i2i_deepwalk', debug=args.debug)
    
    # 记录算法参数
    params = {
        'num_walks': args.num_walks,
        'walk_length': args.walk_length,
        'window_size': args.window_size,
        'vector_size': args.vector_size,
        'min_count': args.min_count,
        'workers': args.workers,
        'epochs': args.epochs,
        'top_n': args.top_n,
        'lookback_days': args.lookback_days,
        'debug': args.debug,
        'use_softmax': args.use_softmax,
        'temperature': args.temperature
    }
    log_algorithm_params(logger, params)
    
    # 创建临时目录
    temp_dir = os.path.join(OUTPUT_DIR, 'temp')
    os.makedirs(temp_dir, exist_ok=True)
    
    date_str = datetime.now().strftime('%Y%m%d')
    edge_file = os.path.join(temp_dir, f'item_graph_{date_str}.txt')
    walks_file = os.path.join(temp_dir, f'walks_{date_str}.txt')
    
    # ============================================================
    # 步骤1: 从数据库获取数据并构建边文件
    # ============================================================
    log_processing_step(logger, "从数据库获取数据")
    
    # 创建数据库连接
    logger.info("连接数据库...")
    engine = create_db_connection(
        DB_CONFIG['host'],
        DB_CONFIG['port'],
        DB_CONFIG['database'],
        DB_CONFIG['username'],
        DB_CONFIG['password']
    )
    
    # 获取时间范围
    start_date, end_date = get_time_range(args.lookback_days)
    logger.info(f"获取数据范围:{start_date} 到 {end_date}")
    
    # SQL查询 - 获取用户行为数据
    sql_query = f"""
    SELECT 
        se.anonymous_id AS user_id,
        se.item_id,
        se.event AS event_type,
        pgs.name AS item_name
    FROM 
        sensors_events se
    LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
    WHERE 
        se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
        AND se.create_time >= '{start_date}'
        AND se.create_time <= '{end_date}'
        AND se.item_id IS NOT NULL
        AND se.anonymous_id IS NOT NULL
    """
    
    logger.info("执行SQL查询...")
    df = pd.read_sql(sql_query, engine)
    logger.info(f"获取到 {len(df)} 条记录")
    
    # 确保ID为整数类型
    df['item_id'] = df['item_id'].astype(int)
    df['user_id'] = df['user_id'].astype(str)
    
    # 记录数据信息
    log_dataframe_info(logger, df, "用户行为数据")
    
    # 定义行为权重
    behavior_weights = {
        'click': 1.0,
        'contactFactory': 5.0,
        'addToPool': 2.0,
        'addToCart': 3.0,
        'purchase': 10.0
    }
    logger.debug(f"行为权重: {behavior_weights}")
    
    # 构建边文件
    log_processing_step(logger, "构建边文件")
    num_nodes = build_edge_file_from_db(df, behavior_weights, edge_file, logger)
    
    # ============================================================
    # 步骤2: 使用DeepWalk进行随机游走
    # ============================================================
    log_processing_step(logger, "执行DeepWalk随机游走")
    
    logger.info("初始化DeepWalk...")
    deepwalk = DeepWalk(
        edge_file=edge_file,
        node_tag_file=None,  # 不使用标签游走
        use_softmax=args.use_softmax,
        temperature=args.temperature,
        p_tag_walk=0.0  # 不使用标签游走
    )
    
    logger.info("开始随机游走...")
    deepwalk.simulate_walks(
        num_walks=args.num_walks,
        walk_length=args.walk_length,
        workers=args.workers,
        output_file=walks_file
    )
    
    # ============================================================
    # 步骤3: 训练Word2Vec模型
    # ============================================================
    log_processing_step(logger, "训练Word2Vec模型")
    
    w2v_config = {
        'vector_size': args.vector_size,
        'window_size': args.window_size,
        'min_count': args.min_count,
        'workers': args.workers,
        'epochs': args.epochs,
        'sg': 1  # Skip-gram
    }
    logger.debug(f"Word2Vec配置: {w2v_config}")
    
    model = train_word2vec_from_walks(walks_file, w2v_config, logger)
    
    # 保存模型(可选)
    if args.save_model:
        model_path = os.path.join(OUTPUT_DIR, f'deepwalk_model_{date_str}.model')
        model.save(model_path)
        logger.info(f"模型已保存到 {model_path}")
    
    # ============================================================
    # 步骤4: 生成相似度
    # ============================================================
    log_processing_step(logger, "生成相似度")
    result = generate_similarities(model, args.top_n, logger)
    
    # ============================================================
    # 步骤5: 保存结果
    # ============================================================
    log_processing_step(logger, "保存结果")
    
    output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_deepwalk_{date_str}.txt')
    
    # 获取name mappings
    name_mappings = {}
    if args.debug:
        logger.info("获取物品名称映射...")
        name_mappings = fetch_name_mappings(engine, debug=True)
    
    save_results(result, output_file, name_mappings, logger)
    
    logger.info(f"✓ DeepWalk完成!")
    logger.info(f"  - 输出文件: {output_file}")
    logger.info(f"  - 商品数: {len(result)}")
    if result:
        avg_sims = sum(len(sims) for sims in result.values()) / len(result)
        logger.info(f"  - 平均相似商品数: {avg_sims:.1f}")
    
    # 如果启用debug模式,保存可读格式
    if args.debug:
        log_processing_step(logger, "保存Debug可读格式")
        save_readable_index(
            output_file,
            result,
            name_mappings,
            description='i2i:deepwalk'
        )
    
    # 清理临时文件(可选)
    if not args.save_graph:
        if os.path.exists(edge_file):
            os.remove(edge_file)
            logger.debug(f"已删除临时文件: {edge_file}")
    if os.path.exists(walks_file):
        os.remove(walks_file)
        logger.debug(f"已删除临时文件: {walks_file}")
    
    print(f"✓ DeepWalk相似度计算完成")
    print(f"  - 输出文件: {output_file}")
    print(f"  - 商品数: {len(result)}")


if __name__ == '__main__':
    main()