i2i_deepwalk.py
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
i2i - DeepWalk算法实现
基于用户-物品图结构训练DeepWalk模型,获取物品向量相似度
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
import pandas as pd
import argparse
from datetime import datetime
from collections import defaultdict
from gensim.models import Word2Vec
import numpy as np
from db_service import create_db_connection
from offline_tasks.config.offline_config import (
DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
)
def build_item_graph(df, behavior_weights):
"""
构建物品图(基于用户共同交互)
Args:
df: DataFrame with columns: user_id, item_id, event_type
behavior_weights: 行为权重字典
Returns:
edge_dict: {item_id: {neighbor_id: weight}}
"""
# 构建用户-物品列表
user_items = defaultdict(list)
for _, row in df.iterrows():
user_id = row['user_id']
item_id = str(row['item_id'])
event_type = row['event_type']
weight = behavior_weights.get(event_type, 1.0)
user_items[user_id].append((item_id, weight))
# 构建物品图边
edge_dict = defaultdict(lambda: defaultdict(float))
for user_id, items in user_items.items():
# 物品两两组合,构建边
for i in range(len(items)):
item_i, weight_i = items[i]
for j in range(i + 1, len(items)):
item_j, weight_j = items[j]
# 边的权重为两个物品权重的平均值
edge_weight = (weight_i + weight_j) / 2.0
edge_dict[item_i][item_j] += edge_weight
edge_dict[item_j][item_i] += edge_weight
return edge_dict
def save_edge_file(edge_dict, output_path):
"""
保存边文件
Args:
edge_dict: 边字典
output_path: 输出路径
"""
with open(output_path, 'w', encoding='utf-8') as f:
for item_id, neighbors in edge_dict.items():
# 格式: item_id \t neighbor1:weight1,neighbor2:weight2,...
neighbor_str = ','.join([f'{nbr}:{weight:.4f}' for nbr, weight in neighbors.items()])
f.write(f'{item_id}\t{neighbor_str}\n')
print(f"Edge file saved to {output_path}")
def random_walk(graph, start_node, walk_length):
"""
执行随机游走
Args:
graph: 图结构 {node: {neighbor: weight}}
start_node: 起始节点
walk_length: 游走长度
Returns:
游走序列
"""
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
if cur not in graph or not graph[cur]:
break
# 获取邻居和权重
neighbors = list(graph[cur].keys())
weights = list(graph[cur].values())
# 归一化权重
total_weight = sum(weights)
if total_weight == 0:
break
probs = [w / total_weight for w in weights]
# 按权重随机选择下一个节点
next_node = np.random.choice(neighbors, p=probs)
walk.append(next_node)
return walk
def generate_walks(graph, num_walks, walk_length):
"""
生成随机游走序列
Args:
graph: 图结构
num_walks: 每个节点的游走次数
walk_length: 游走长度
Returns:
List of walks
"""
walks = []
nodes = list(graph.keys())
print(f"Generating {num_walks} walks per node, walk length {walk_length}...")
for _ in range(num_walks):
np.random.shuffle(nodes)
for node in nodes:
walk = random_walk(graph, node, walk_length)
if len(walk) >= 2:
walks.append(walk)
return walks
def train_word2vec(walks, config):
"""
训练Word2Vec模型
Args:
walks: 游走序列列表
config: Word2Vec配置
Returns:
Word2Vec模型
"""
print(f"Training Word2Vec with {len(walks)} walks...")
model = Word2Vec(
sentences=walks,
vector_size=config['vector_size'],
window=config['window_size'],
min_count=config['min_count'],
workers=config['workers'],
sg=config['sg'],
epochs=config['epochs'],
seed=42
)
print(f"Training completed. Vocabulary size: {len(model.wv)}")
return model
def generate_similarities(model, top_n=50):
"""
生成物品相似度
Args:
model: Word2Vec模型
top_n: Top N similar items
Returns:
Dict[item_id, List[Tuple(similar_item_id, score)]]
"""
result = {}
for item_id in model.wv.index_to_key:
try:
similar_items = model.wv.most_similar(item_id, topn=top_n)
result[item_id] = [(sim_id, float(score)) for sim_id, score in similar_items]
except KeyError:
continue
return result
def main():
parser = argparse.ArgumentParser(description='Run DeepWalk for i2i similarity')
parser.add_argument('--num_walks', type=int, default=I2I_CONFIG['deepwalk']['num_walks'],
help='Number of walks per node')
parser.add_argument('--walk_length', type=int, default=I2I_CONFIG['deepwalk']['walk_length'],
help='Walk length')
parser.add_argument('--window_size', type=int, default=I2I_CONFIG['deepwalk']['window_size'],
help='Window size for Word2Vec')
parser.add_argument('--vector_size', type=int, default=I2I_CONFIG['deepwalk']['vector_size'],
help='Vector size for Word2Vec')
parser.add_argument('--min_count', type=int, default=I2I_CONFIG['deepwalk']['min_count'],
help='Minimum word count')
parser.add_argument('--workers', type=int, default=I2I_CONFIG['deepwalk']['workers'],
help='Number of workers')
parser.add_argument('--epochs', type=int, default=I2I_CONFIG['deepwalk']['epochs'],
help='Number of epochs')
parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
parser.add_argument('--output', type=str, default=None,
help='Output file path')
parser.add_argument('--save_model', action='store_true',
help='Save Word2Vec model')
parser.add_argument('--save_graph', action='store_true',
help='Save graph edge file')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode with detailed logging and readable output')
args = parser.parse_args()
# 创建数据库连接
print("Connecting to database...")
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
# 获取时间范围
start_date, end_date = get_time_range(args.lookback_days)
print(f"Fetching data from {start_date} to {end_date}...")
# SQL查询 - 获取用户行为数据
sql_query = f"""
SELECT
se.anonymous_id AS user_id,
se.item_id,
se.event AS event_type,
pgs.name AS item_name
FROM
sensors_events se
LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
WHERE
se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{start_date}'
AND se.create_time <= '{end_date}'
AND se.item_id IS NOT NULL
AND se.anonymous_id IS NOT NULL
"""
print("Executing SQL query...")
df = pd.read_sql(sql_query, engine)
print(f"Fetched {len(df)} records")
# 定义行为权重
behavior_weights = {
'click': 1.0,
'contactFactory': 5.0,
'addToPool': 2.0,
'addToCart': 3.0,
'purchase': 10.0
}
# 构建物品图
print("Building item graph...")
graph = build_item_graph(df, behavior_weights)
print(f"Graph built with {len(graph)} nodes")
# 保存边文件(可选)
if args.save_graph:
edge_file = os.path.join(OUTPUT_DIR, f'item_graph_{datetime.now().strftime("%Y%m%d")}.txt')
save_edge_file(graph, edge_file)
# 生成随机游走
print("Generating random walks...")
walks = generate_walks(graph, args.num_walks, args.walk_length)
print(f"Generated {len(walks)} walks")
# 训练Word2Vec模型
w2v_config = {
'vector_size': args.vector_size,
'window_size': args.window_size,
'min_count': args.min_count,
'workers': args.workers,
'epochs': args.epochs,
'sg': 1
}
model = train_word2vec(walks, w2v_config)
# 保存模型(可选)
if args.save_model:
model_path = os.path.join(OUTPUT_DIR, f'deepwalk_model_{datetime.now().strftime("%Y%m%d")}.model')
model.save(model_path)
print(f"Model saved to {model_path}")
# 生成相似度
print("Generating similarities...")
result = generate_similarities(model, top_n=args.top_n)
# 创建item_id到name的映射
item_name_map = dict(zip(df['item_id'].astype(str), df.groupby('item_id')['item_name'].first()))
# 输出结果
output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_deepwalk_{datetime.now().strftime("%Y%m%d")}.txt')
print(f"Writing results to {output_file}...")
with open(output_file, 'w', encoding='utf-8') as f:
for item_id, sims in result.items():
item_name = item_name_map.get(item_id, 'Unknown')
if not sims:
continue
# 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in sims])
f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
print(f"Done! Generated i2i similarities for {len(result)} items")
print(f"Output saved to: {output_file}")
if __name__ == '__main__':
main()