i2i_swing.py
12.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
i2i - Swing算法实现
基于用户行为的物品相似度计算
参考item_sim.py的数据格式,适配真实数据
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
import pandas as pd
import math
from collections import defaultdict
import argparse
import json
from datetime import datetime, timedelta
from db_service import create_db_connection
from offline_tasks.config.offline_config import (
DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
)
from offline_tasks.scripts.debug_utils import (
setup_debug_logger, log_dataframe_info, log_dict_stats,
save_readable_index, fetch_name_mappings, log_algorithm_params,
log_processing_step
)
def calculate_time_weight(event_time, reference_time, decay_factor=0.95, days_unit=30):
"""
计算时间衰减权重
Args:
event_time: 事件发生时间
reference_time: 参考时间(通常是当前时间)
decay_factor: 衰减因子
days_unit: 衰减单位(天)
Returns:
时间权重
"""
if pd.isna(event_time):
return 1.0
time_diff = (reference_time - event_time).days
if time_diff < 0:
return 1.0
# 计算衰减权重
periods = time_diff / days_unit
weight = math.pow(decay_factor, periods)
return weight
def swing_algorithm(df, alpha=0.5, time_decay=True, decay_factor=0.95, logger=None, debug=False):
"""
Swing算法实现
Args:
df: DataFrame with columns: user_id, item_id, weight, create_time
alpha: Swing算法的alpha参数
time_decay: 是否使用时间衰减
decay_factor: 时间衰减因子
logger: 日志记录器
debug: 是否开启debug模式
Returns:
Dict[item_id, List[Tuple(similar_item_id, score)]]
"""
start_time = datetime.now()
if logger:
logger.debug(f"开始Swing算法计算,参数: alpha={alpha}, time_decay={time_decay}")
# 如果使用时间衰减,计算时间权重
reference_time = datetime.now()
if time_decay and 'create_time' in df.columns:
if logger:
logger.debug("应用时间衰减...")
df['time_weight'] = df['create_time'].apply(
lambda x: calculate_time_weight(x, reference_time, decay_factor)
)
df['weight'] = df['weight'] * df['time_weight']
if logger and debug:
logger.debug(f"时间权重统计: min={df['time_weight'].min():.4f}, max={df['time_weight'].max():.4f}, avg={df['time_weight'].mean():.4f}")
# 构建用户-物品倒排索引
if logger:
log_processing_step(logger, "步骤1: 构建用户-物品倒排索引")
user_items = defaultdict(set)
item_users = defaultdict(set)
item_freq = defaultdict(float)
for _, row in df.iterrows():
user_id = row['user_id']
item_id = row['item_id']
weight = row['weight']
user_items[user_id].add(item_id)
item_users[item_id].add(user_id)
item_freq[item_id] += weight
if logger:
logger.info(f"总用户数: {len(user_items)}, 总商品数: {len(item_users)}")
if debug:
log_dict_stats(logger, dict(list(user_items.items())[:1000]), "用户-商品倒排索引(采样)", top_n=5)
log_dict_stats(logger, dict(list(item_users.items())[:1000]), "商品-用户倒排索引(采样)", top_n=5)
# 计算物品相似度
if logger:
log_processing_step(logger, "步骤2: 计算Swing物品相似度")
item_sim_dict = defaultdict(lambda: defaultdict(float))
# 遍历每个物品对
processed_pairs = 0
total_items = len(item_users)
for idx_i, item_i in enumerate(item_users):
users_i = item_users[item_i]
# 找到所有与item_i共现的物品
for item_j in item_users:
if item_i >= item_j: # 避免重复计算
continue
users_j = item_users[item_j]
common_users = users_i & users_j
if len(common_users) < 2:
continue
# 计算Swing相似度
sim_score = 0.0
common_users_list = list(common_users)
for idx_u in range(len(common_users_list)):
user_u = common_users_list[idx_u]
items_u = user_items[user_u]
for idx_v in range(idx_u + 1, len(common_users_list)):
user_v = common_users_list[idx_v]
items_v = user_items[user_v]
# 计算用户u和用户v的共同物品数
common_items = items_u & items_v
# Swing公式
sim_score += 1.0 / (alpha + len(common_items))
item_sim_dict[item_i][item_j] = sim_score
item_sim_dict[item_j][item_i] = sim_score
processed_pairs += 1
# Debug: 显示处理进度
if logger and debug and (idx_i + 1) % 50 == 0:
logger.debug(f"已处理 {idx_i + 1}/{total_items} 个商品 ({(idx_i+1)/total_items*100:.1f}%)")
if logger:
logger.info(f"计算了 {processed_pairs} 对商品相似度")
# 对相似度进行归一化并排序
if logger:
log_processing_step(logger, "步骤3: 整理和排序结果")
result = {}
for item_i in item_sim_dict:
sims = item_sim_dict[item_i]
# 按相似度排序
sorted_sims = sorted(sims.items(), key=lambda x: -x[1])
result[item_i] = sorted_sims
if logger:
total_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Swing算法完成: {len(result)} 个商品有相似推荐")
logger.info(f"总耗时: {total_time:.2f}秒")
# 统计每个商品的相似商品数
sim_counts = [len(sims) for sims in result.values()]
if sim_counts:
logger.info(f"相似商品数统计: min={min(sim_counts)}, max={max(sim_counts)}, avg={sum(sim_counts)/len(sim_counts):.2f}")
# 采样展示结果
if debug:
sample_results = list(result.items())[:3]
for item_i, sims in sample_results:
logger.debug(f" 商品 {item_i} 的Top5相似商品: {sims[:5]}")
return result
def main():
parser = argparse.ArgumentParser(description='Run Swing algorithm for i2i similarity')
parser.add_argument('--alpha', type=float, default=I2I_CONFIG['swing']['alpha'],
help='Alpha parameter for Swing algorithm')
parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
help=f'Number of days to look back for user behavior (default: {DEFAULT_LOOKBACK_DAYS})')
parser.add_argument('--time_decay', action='store_true', default=False,
help='Use time decay for behavior weights (default: False for B2B low-frequency scenarios)')
parser.add_argument('--decay_factor', type=float, default=0.95,
help='Time decay factor')
parser.add_argument('--output', type=str, default=None,
help='Output file path')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode with detailed logging and readable output')
args = parser.parse_args()
# 设置日志
logger = setup_debug_logger('i2i_swing', debug=args.debug)
# 记录参数
log_algorithm_params(logger, {
'alpha': args.alpha,
'top_n': args.top_n,
'lookback_days': args.lookback_days,
'time_decay': args.time_decay,
'decay_factor': args.decay_factor,
'debug': args.debug
})
# 创建数据库连接
logger.info("连接数据库...")
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
# 获取时间范围
start_date, end_date = get_time_range(args.lookback_days)
logger.info(f"获取数据: {start_date} 到 {end_date}")
# SQL查询 - 获取用户行为数据
sql_query = f"""
SELECT
se.anonymous_id AS user_id,
se.item_id,
se.event AS event_type,
se.create_time,
pgs.name AS item_name
FROM
sensors_events se
LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
WHERE
se.event IN ('contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{start_date}'
AND se.create_time <= '{end_date}'
AND se.item_id IS NOT NULL
AND se.anonymous_id IS NOT NULL
ORDER BY
se.create_time
"""
try:
logger.info("执行SQL查询...")
df = pd.read_sql(sql_query, engine)
logger.info(f"获取到 {len(df)} 条记录")
# Debug: 显示数据详情
if args.debug:
log_dataframe_info(logger, df, "用户行为数据", sample_size=10)
except Exception as e:
logger.error(f"获取数据失败: {e}")
return
if len(df) == 0:
logger.warning("没有找到数据")
return
# 转换create_time为datetime
df['create_time'] = pd.to_datetime(df['create_time'])
# 定义行为权重
behavior_weights = {
'contactFactory': 5.0,
'addToPool': 2.0,
'addToCart': 3.0,
'purchase': 10.0
}
# 添加权重列
df['weight'] = df['event_type'].map(behavior_weights).fillna(1.0)
if logger and args.debug:
logger.debug(f"行为类型分布:")
event_counts = df['event_type'].value_counts()
for event, count in event_counts.items():
logger.debug(f" {event}: {count} ({count/len(df)*100:.2f}%)")
# 运行Swing算法
logger.info("运行Swing算法...")
result = swing_algorithm(
df,
alpha=args.alpha,
time_decay=args.time_decay,
decay_factor=args.decay_factor,
logger=logger,
debug=args.debug
)
# 创建item_id到name的映射(key转为字符串,与name_mappings一致)
item_name_map = dict(zip(df['item_id'].unique().astype(str), df.groupby('item_id')['item_name'].first()))
# 输出结果
output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_swing_{datetime.now().strftime("%Y%m%d")}.txt')
logger.info(f"保存结果到: {output_file}")
output_count = 0
with open(output_file, 'w', encoding='utf-8') as f:
for item_id, sims in result.items():
# item_name_map的key是字符串,需要转换
item_name = item_name_map.get(str(item_id), 'Unknown')
# 只取前N个最相似的商品
top_sims = sims[:args.top_n]
if not top_sims:
continue
# 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in top_sims])
f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
output_count += 1
logger.info(f"输出了 {output_count} 个商品的推荐")
# Debug模式:生成明文文件
if args.debug:
logger.info("Debug模式:生成明文索引文件...")
try:
# 获取名称映射
logger.debug("获取ID到名称的映射...")
name_mappings = fetch_name_mappings(engine, debug=True)
# 准备索引数据(合并已有的item_name_map)
# item_name_map的key已经是str类型,可以直接更新
name_mappings['item'].update(item_name_map)
if args.debug:
logger.debug(f"name_mappings['item']共有 {len(name_mappings['item'])} 个商品名称")
index_data = {}
for item_id, sims in result.items():
top_sims = sims[:args.top_n]
if top_sims:
index_data[f"i2i:swing:{item_id}"] = top_sims
# 保存明文文件
readable_file = save_readable_index(
output_file,
index_data,
name_mappings,
description=f"Swing算法 i2i相似度推荐 (alpha={args.alpha}, lookback_days={args.lookback_days})"
)
logger.info(f"明文索引文件: {readable_file}")
except Exception as e:
logger.error(f"生成明文文件失败: {e}", exc_info=True)
logger.info("完成!")
if __name__ == '__main__':
main()