5ab1c29c
tangwang
first commit
|
1
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
2
3
4
5
|
i2i - 基于ES向量的内容相似索引
从Elasticsearch获取商品向量,计算两种相似度:
1. 基于名称文本向量的相似度
2. 基于图片向量的相似度
|
5ab1c29c
tangwang
first commit
|
6
7
8
9
10
|
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
b57c6eb4
tangwang
offline tasks: fi...
|
11
|
import json
|
5ab1c29c
tangwang
first commit
|
12
|
import pandas as pd
|
b57c6eb4
tangwang
offline tasks: fi...
|
13
14
|
from datetime import datetime, timedelta
from elasticsearch import Elasticsearch
|
5ab1c29c
tangwang
first commit
|
15
|
from db_service import create_db_connection
|
b57c6eb4
tangwang
offline tasks: fi...
|
16
17
|
from offline_tasks.config.offline_config import DB_CONFIG, OUTPUT_DIR
from offline_tasks.scripts.debug_utils import setup_debug_logger, log_processing_step
|
5ab1c29c
tangwang
first commit
|
18
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
19
20
21
22
23
24
25
|
# ES配置
ES_CONFIG = {
'host': 'http://localhost:9200',
'index_name': 'spu',
'username': 'essa',
'password': '4hOaLaf41y2VuI8y'
}
|
5ab1c29c
tangwang
first commit
|
26
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
27
28
29
30
31
32
33
|
# 算法参数
TOP_N = 50 # 每个商品返回的相似商品数量
KNN_K = 100 # knn查询返回的候选数
KNN_CANDIDATES = 200 # knn查询的候选池大小
def get_active_items(engine):
|
5ab1c29c
tangwang
first commit
|
34
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
35
|
获取最近1年有过行为的item列表
|
5ab1c29c
tangwang
first commit
|
36
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
37
38
39
40
41
42
43
44
45
46
47
|
one_year_ago = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')
sql_query = f"""
SELECT DISTINCT
se.item_id
FROM
sensors_events se
WHERE
se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{one_year_ago}'
AND se.item_id IS NOT NULL
|
5ab1c29c
tangwang
first commit
|
48
49
|
"""
|
5ab1c29c
tangwang
first commit
|
50
|
df = pd.read_sql(sql_query, engine)
|
b57c6eb4
tangwang
offline tasks: fi...
|
51
|
return df['item_id'].tolist()
|
5ab1c29c
tangwang
first commit
|
52
53
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
54
55
56
57
58
59
60
61
62
63
64
65
|
def connect_es():
"""连接到Elasticsearch"""
es = Elasticsearch(
[ES_CONFIG['host']],
basic_auth=(ES_CONFIG['username'], ES_CONFIG['password']),
verify_certs=False,
request_timeout=30
)
return es
def get_item_vectors(es, item_id):
|
5ab1c29c
tangwang
first commit
|
66
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
67
|
从ES获取商品的向量数据
|
5ab1c29c
tangwang
first commit
|
68
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
Returns:
dict with keys: _id, name_zh, embedding_name_zh, embedding_pic_h14
或 None if not found
"""
try:
response = es.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"term": {
"_id": str(item_id)
}
},
"_source": {
"includes": ["_id", "name_zh", "embedding_name_zh", "embedding_pic_h14"]
}
}
)
if response['hits']['hits']:
hit = response['hits']['hits'][0]
return {
'_id': hit['_id'],
'name_zh': hit['_source'].get('name_zh', ''),
'embedding_name_zh': hit['_source'].get('embedding_name_zh'),
'embedding_pic_h14': hit['_source'].get('embedding_pic_h14')
}
return None
except Exception as e:
return None
|
5ab1c29c
tangwang
first commit
|
99
100
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
101
|
def find_similar_by_vector(es, vector, field_name, k=KNN_K, num_candidates=KNN_CANDIDATES):
|
5ab1c29c
tangwang
first commit
|
102
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
103
|
使用knn查询找到相似的items
|
40442baf
tangwang
offline tasks: fi...
|
104
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
105
106
107
108
109
110
|
Args:
es: Elasticsearch客户端
vector: 查询向量
field_name: 向量字段名 (embedding_name_zh 或 embedding_pic_h14.vector)
k: 返回的结果数
num_candidates: 候选池大小
|
5ab1c29c
tangwang
first commit
|
111
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
Returns:
List of (item_id, score) tuples
"""
try:
response = es.search(
index=ES_CONFIG['index_name'],
body={
"knn": {
"field": field_name,
"query_vector": vector,
"k": k,
"num_candidates": num_candidates
},
"_source": ["_id", "name_zh"],
"size": k
}
)
|
5ab1c29c
tangwang
first commit
|
129
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
130
131
132
133
134
135
136
137
138
139
|
results = []
for hit in response['hits']['hits']:
results.append((
hit['_id'],
hit['_score'],
hit['_source'].get('name_zh', '')
))
return results
except Exception as e:
return []
|
5ab1c29c
tangwang
first commit
|
140
141
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
142
|
def generate_similarity_index(es, active_items, vector_field, field_name, logger):
|
5ab1c29c
tangwang
first commit
|
143
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
144
145
146
147
148
149
150
151
152
153
154
|
生成一种向量的相似度索引
Args:
es: Elasticsearch客户端
active_items: 活跃商品ID列表
vector_field: 向量字段名 (embedding_name_zh 或 embedding_pic_h14)
field_name: 字段简称 (name 或 pic)
logger: 日志记录器
Returns:
dict: {item_id: [(similar_id, score, name), ...]}
|
5ab1c29c
tangwang
first commit
|
155
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
156
157
|
result = {}
total = len(active_items)
|
5ab1c29c
tangwang
first commit
|
158
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
159
160
161
162
163
164
165
|
for idx, item_id in enumerate(active_items):
if (idx + 1) % 100 == 0:
logger.info(f"处理进度: {idx + 1}/{total} ({(idx + 1) / total * 100:.1f}%)")
# 获取该商品的向量
item_data = get_item_vectors(es, item_id)
if not item_data:
|
5ab1c29c
tangwang
first commit
|
166
167
|
continue
|
b57c6eb4
tangwang
offline tasks: fi...
|
168
169
170
171
172
173
174
175
176
177
178
179
180
|
# 提取向量
if vector_field == 'embedding_name_zh':
query_vector = item_data.get('embedding_name_zh')
elif vector_field == 'embedding_pic_h14':
pic_data = item_data.get('embedding_pic_h14')
if pic_data and isinstance(pic_data, list) and len(pic_data) > 0:
query_vector = pic_data[0].get('vector') if isinstance(pic_data[0], dict) else None
else:
query_vector = None
else:
query_vector = None
if not query_vector:
|
5ab1c29c
tangwang
first commit
|
181
182
|
continue
|
b57c6eb4
tangwang
offline tasks: fi...
|
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
# 使用knn查询相似items(需要排除自己)
knn_field = f"{vector_field}.vector" if vector_field == 'embedding_pic_h14' else vector_field
similar_items = find_similar_by_vector(es, query_vector, knn_field)
# 过滤掉自己,只保留top N
filtered_items = []
for sim_id, score, name in similar_items:
if sim_id != str(item_id):
filtered_items.append((sim_id, score, name))
if len(filtered_items) >= TOP_N:
break
if filtered_items:
result[item_id] = filtered_items
|
5ab1c29c
tangwang
first commit
|
197
198
199
200
|
return result
|
b57c6eb4
tangwang
offline tasks: fi...
|
201
|
def save_index_file(result, es, output_file, logger):
|
5ab1c29c
tangwang
first commit
|
202
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
203
204
205
|
保存索引文件
格式: item_id \t item_name \t similar_id1:score1,similar_id2:score2,...
|
5ab1c29c
tangwang
first commit
|
206
|
"""
|
b57c6eb4
tangwang
offline tasks: fi...
|
207
|
logger.info(f"保存索引到: {output_file}")
|
5ab1c29c
tangwang
first commit
|
208
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
209
210
211
212
213
214
215
216
217
218
219
220
|
with open(output_file, 'w', encoding='utf-8') as f:
for item_id, similar_items in result.items():
if not similar_items:
continue
# 获取当前商品的名称
item_data = get_item_vectors(es, item_id)
item_name = item_data.get('name_zh', 'Unknown') if item_data else 'Unknown'
# 格式化相似商品列表
sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score, _ in similar_items])
f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
|
5ab1c29c
tangwang
first commit
|
221
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
222
|
logger.info(f"索引保存完成,共 {len(result)} 个商品")
|
5ab1c29c
tangwang
first commit
|
223
224
225
|
def main():
|
b57c6eb4
tangwang
offline tasks: fi...
|
226
|
"""主函数"""
|
14f3dcbe
tangwang
offline tasks
|
227
|
# 设置logger
|
b57c6eb4
tangwang
offline tasks: fi...
|
228
|
logger = setup_debug_logger('i2i_content_similar', debug=True)
|
14f3dcbe
tangwang
offline tasks
|
229
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
230
231
232
233
234
235
|
logger.info("="*80)
logger.info("开始生成基于ES向量的内容相似索引")
logger.info(f"ES地址: {ES_CONFIG['host']}")
logger.info(f"索引名: {ES_CONFIG['index_name']}")
logger.info(f"Top N: {TOP_N}")
logger.info("="*80)
|
14f3dcbe
tangwang
offline tasks
|
236
|
|
5ab1c29c
tangwang
first commit
|
237
|
# 创建数据库连接
|
b57c6eb4
tangwang
offline tasks: fi...
|
238
|
log_processing_step(logger, "连接数据库")
|
5ab1c29c
tangwang
first commit
|
239
240
241
242
243
244
245
246
|
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
|
b57c6eb4
tangwang
offline tasks: fi...
|
247
248
249
250
|
# 获取活跃商品
log_processing_step(logger, "获取最近1年有过行为的商品")
active_items = get_active_items(engine)
logger.info(f"找到 {len(active_items)} 个活跃商品")
|
5ab1c29c
tangwang
first commit
|
251
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
252
253
254
255
|
# 连接ES
log_processing_step(logger, "连接Elasticsearch")
es = connect_es()
logger.info("ES连接成功")
|
5ab1c29c
tangwang
first commit
|
256
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
257
258
|
# 生成两份相似度索引
date_str = datetime.now().strftime("%Y%m%d")
|
5ab1c29c
tangwang
first commit
|
259
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
260
261
262
263
|
# 1. 基于名称文本向量
log_processing_step(logger, "生成基于名称文本向量的相似索引")
name_result = generate_similarity_index(
es, active_items, 'embedding_name_zh', 'name', logger
|
5ab1c29c
tangwang
first commit
|
264
|
)
|
b57c6eb4
tangwang
offline tasks: fi...
|
265
266
|
name_output = os.path.join(OUTPUT_DIR, f'i2i_content_name_{date_str}.txt')
save_index_file(name_result, es, name_output, logger)
|
5ab1c29c
tangwang
first commit
|
267
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
268
269
270
271
272
273
274
|
# 2. 基于图片向量
log_processing_step(logger, "生成基于图片向量的相似索引")
pic_result = generate_similarity_index(
es, active_items, 'embedding_pic_h14', 'pic', logger
)
pic_output = os.path.join(OUTPUT_DIR, f'i2i_content_pic_{date_str}.txt')
save_index_file(pic_result, es, pic_output, logger)
|
14f3dcbe
tangwang
offline tasks
|
275
|
|
b57c6eb4
tangwang
offline tasks: fi...
|
276
277
278
279
280
|
logger.info("="*80)
logger.info("完成!生成了两份内容相似索引:")
logger.info(f" 1. 名称向量索引: {name_output} ({len(name_result)} 个商品)")
logger.info(f" 2. 图片向量索引: {pic_output} ({len(pic_result)} 个商品)")
logger.info("="*80)
|
5ab1c29c
tangwang
first commit
|
281
282
283
284
|
if __name__ == '__main__':
main()
|