Blame view

offline_tasks/scripts/i2i_content_similar.py 8.83 KB
5ab1c29c   tangwang   first commit
1
  """
b57c6eb4   tangwang   offline tasks: fi...
2
3
4
5
  i2i - 基于ES向量的内容相似索引
  Elasticsearch获取商品向量,计算两种相似度:
  1. 基于名称文本向量的相似度
  2. 基于图片向量的相似度
5ab1c29c   tangwang   first commit
6
7
8
9
10
  """
  import sys
  import os
  sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
  
b57c6eb4   tangwang   offline tasks: fi...
11
  import json
5ab1c29c   tangwang   first commit
12
  import pandas as pd
b57c6eb4   tangwang   offline tasks: fi...
13
14
  from datetime import datetime, timedelta
  from elasticsearch import Elasticsearch
5ab1c29c   tangwang   first commit
15
  from db_service import create_db_connection
b57c6eb4   tangwang   offline tasks: fi...
16
17
  from offline_tasks.config.offline_config import DB_CONFIG, OUTPUT_DIR
  from offline_tasks.scripts.debug_utils import setup_debug_logger, log_processing_step
5ab1c29c   tangwang   first commit
18
  
b57c6eb4   tangwang   offline tasks: fi...
19
20
21
22
23
24
25
  # ES配置
  ES_CONFIG = {
      'host': 'http://localhost:9200',
      'index_name': 'spu',
      'username': 'essa',
      'password': '4hOaLaf41y2VuI8y'
  }
5ab1c29c   tangwang   first commit
26
  
b57c6eb4   tangwang   offline tasks: fi...
27
28
29
30
31
32
33
  # 算法参数
  TOP_N = 50          # 每个商品返回的相似商品数量
  KNN_K = 100         # knn查询返回的候选数
  KNN_CANDIDATES = 200  # knn查询的候选池大小
  
  
  def get_active_items(engine):
5ab1c29c   tangwang   first commit
34
      """
b57c6eb4   tangwang   offline tasks: fi...
35
      获取最近1年有过行为的item列表
5ab1c29c   tangwang   first commit
36
      """
b57c6eb4   tangwang   offline tasks: fi...
37
38
39
40
41
42
43
44
45
46
47
      one_year_ago = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')
      
      sql_query = f"""
      SELECT DISTINCT
          se.item_id
      FROM 
          sensors_events se
      WHERE 
          se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
          AND se.create_time >= '{one_year_ago}'
          AND se.item_id IS NOT NULL
5ab1c29c   tangwang   first commit
48
49
      """
      
5ab1c29c   tangwang   first commit
50
      df = pd.read_sql(sql_query, engine)
b57c6eb4   tangwang   offline tasks: fi...
51
      return df['item_id'].tolist()
5ab1c29c   tangwang   first commit
52
53
  
  
b57c6eb4   tangwang   offline tasks: fi...
54
55
56
57
58
59
60
61
62
63
64
65
  def connect_es():
      """连接到Elasticsearch"""
      es = Elasticsearch(
          [ES_CONFIG['host']],
          basic_auth=(ES_CONFIG['username'], ES_CONFIG['password']),
          verify_certs=False,
          request_timeout=30
      )
      return es
  
  
  def get_item_vectors(es, item_id):
5ab1c29c   tangwang   first commit
66
      """
b57c6eb4   tangwang   offline tasks: fi...
67
      ES获取商品的向量数据
5ab1c29c   tangwang   first commit
68
      
b57c6eb4   tangwang   offline tasks: fi...
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
      Returns:
          dict with keys: _id, name_zh, embedding_name_zh, embedding_pic_h14
           None if not found
      """
      try:
          response = es.search(
              index=ES_CONFIG['index_name'],
              body={
                  "query": {
                      "term": {
                          "_id": str(item_id)
                      }
                  },
                  "_source": {
                      "includes": ["_id", "name_zh", "embedding_name_zh", "embedding_pic_h14"]
                  }
              }
          )
          
          if response['hits']['hits']:
              hit = response['hits']['hits'][0]
              return {
                  '_id': hit['_id'],
                  'name_zh': hit['_source'].get('name_zh', ''),
                  'embedding_name_zh': hit['_source'].get('embedding_name_zh'),
                  'embedding_pic_h14': hit['_source'].get('embedding_pic_h14')
              }
          return None
      except Exception as e:
          return None
5ab1c29c   tangwang   first commit
99
100
  
  
b57c6eb4   tangwang   offline tasks: fi...
101
  def find_similar_by_vector(es, vector, field_name, k=KNN_K, num_candidates=KNN_CANDIDATES):
5ab1c29c   tangwang   first commit
102
      """
b57c6eb4   tangwang   offline tasks: fi...
103
      使用knn查询找到相似的items
40442baf   tangwang   offline tasks: fi...
104
      
b57c6eb4   tangwang   offline tasks: fi...
105
106
107
108
109
110
      Args:
          es: Elasticsearch客户端
          vector: 查询向量
          field_name: 向量字段名 (embedding_name_zh  embedding_pic_h14.vector)
          k: 返回的结果数
          num_candidates: 候选池大小
5ab1c29c   tangwang   first commit
111
      
b57c6eb4   tangwang   offline tasks: fi...
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
      Returns:
          List of (item_id, score) tuples
      """
      try:
          response = es.search(
              index=ES_CONFIG['index_name'],
              body={
                  "knn": {
                      "field": field_name,
                      "query_vector": vector,
                      "k": k,
                      "num_candidates": num_candidates
                  },
                  "_source": ["_id", "name_zh"],
                  "size": k
              }
          )
5ab1c29c   tangwang   first commit
129
          
b57c6eb4   tangwang   offline tasks: fi...
130
131
132
133
134
135
136
137
138
139
          results = []
          for hit in response['hits']['hits']:
              results.append((
                  hit['_id'],
                  hit['_score'],
                  hit['_source'].get('name_zh', '')
              ))
          return results
      except Exception as e:
          return []
5ab1c29c   tangwang   first commit
140
141
  
  
b57c6eb4   tangwang   offline tasks: fi...
142
  def generate_similarity_index(es, active_items, vector_field, field_name, logger):
5ab1c29c   tangwang   first commit
143
      """
b57c6eb4   tangwang   offline tasks: fi...
144
145
146
147
148
149
150
151
152
153
154
      生成一种向量的相似度索引
      
      Args:
          es: Elasticsearch客户端
          active_items: 活跃商品ID列表
          vector_field: 向量字段名 (embedding_name_zh  embedding_pic_h14)
          field_name: 字段简称 (name  pic)
          logger: 日志记录器
      
      Returns:
          dict: {item_id: [(similar_id, score, name), ...]}
5ab1c29c   tangwang   first commit
155
      """
b57c6eb4   tangwang   offline tasks: fi...
156
157
      result = {}
      total = len(active_items)
5ab1c29c   tangwang   first commit
158
      
b57c6eb4   tangwang   offline tasks: fi...
159
160
161
162
163
164
165
      for idx, item_id in enumerate(active_items):
          if (idx + 1) % 100 == 0:
              logger.info(f"处理进度: {idx + 1}/{total} ({(idx + 1) / total * 100:.1f}%)")
          
          # 获取该商品的向量
          item_data = get_item_vectors(es, item_id)
          if not item_data:
5ab1c29c   tangwang   first commit
166
167
              continue
          
b57c6eb4   tangwang   offline tasks: fi...
168
169
170
171
172
173
174
175
176
177
178
179
180
          # 提取向量
          if vector_field == 'embedding_name_zh':
              query_vector = item_data.get('embedding_name_zh')
          elif vector_field == 'embedding_pic_h14':
              pic_data = item_data.get('embedding_pic_h14')
              if pic_data and isinstance(pic_data, list) and len(pic_data) > 0:
                  query_vector = pic_data[0].get('vector') if isinstance(pic_data[0], dict) else None
              else:
                  query_vector = None
          else:
              query_vector = None
          
          if not query_vector:
5ab1c29c   tangwang   first commit
181
182
              continue
          
b57c6eb4   tangwang   offline tasks: fi...
183
184
185
186
187
188
189
190
191
192
193
194
195
196
          # 使用knn查询相似items(需要排除自己)
          knn_field = f"{vector_field}.vector" if vector_field == 'embedding_pic_h14' else vector_field
          similar_items = find_similar_by_vector(es, query_vector, knn_field)
          
          # 过滤掉自己,只保留top N
          filtered_items = []
          for sim_id, score, name in similar_items:
              if sim_id != str(item_id):
                  filtered_items.append((sim_id, score, name))
              if len(filtered_items) >= TOP_N:
                  break
          
          if filtered_items:
              result[item_id] = filtered_items
5ab1c29c   tangwang   first commit
197
198
199
200
      
      return result
  
  
b57c6eb4   tangwang   offline tasks: fi...
201
  def save_index_file(result, es, output_file, logger):
5ab1c29c   tangwang   first commit
202
      """
b57c6eb4   tangwang   offline tasks: fi...
203
204
205
      保存索引文件
      
      格式: item_id \t item_name \t similar_id1:score1,similar_id2:score2,...
5ab1c29c   tangwang   first commit
206
      """
b57c6eb4   tangwang   offline tasks: fi...
207
      logger.info(f"保存索引到: {output_file}")
5ab1c29c   tangwang   first commit
208
      
b57c6eb4   tangwang   offline tasks: fi...
209
210
211
212
213
214
215
216
217
218
219
220
      with open(output_file, 'w', encoding='utf-8') as f:
          for item_id, similar_items in result.items():
              if not similar_items:
                  continue
              
              # 获取当前商品的名称
              item_data = get_item_vectors(es, item_id)
              item_name = item_data.get('name_zh', 'Unknown') if item_data else 'Unknown'
              
              # 格式化相似商品列表
              sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score, _ in similar_items])
              f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
5ab1c29c   tangwang   first commit
221
      
b57c6eb4   tangwang   offline tasks: fi...
222
      logger.info(f"索引保存完成,共 {len(result)} 个商品")
5ab1c29c   tangwang   first commit
223
224
225
  
  
  def main():
b57c6eb4   tangwang   offline tasks: fi...
226
      """主函数"""
14f3dcbe   tangwang   offline tasks
227
      # 设置logger
b57c6eb4   tangwang   offline tasks: fi...
228
      logger = setup_debug_logger('i2i_content_similar', debug=True)
14f3dcbe   tangwang   offline tasks
229
      
b57c6eb4   tangwang   offline tasks: fi...
230
231
232
233
234
235
      logger.info("="*80)
      logger.info("开始生成基于ES向量的内容相似索引")
      logger.info(f"ES地址: {ES_CONFIG['host']}")
      logger.info(f"索引名: {ES_CONFIG['index_name']}")
      logger.info(f"Top N: {TOP_N}")
      logger.info("="*80)
14f3dcbe   tangwang   offline tasks
236
      
5ab1c29c   tangwang   first commit
237
      # 创建数据库连接
b57c6eb4   tangwang   offline tasks: fi...
238
      log_processing_step(logger, "连接数据库")
5ab1c29c   tangwang   first commit
239
240
241
242
243
244
245
246
      engine = create_db_connection(
          DB_CONFIG['host'],
          DB_CONFIG['port'],
          DB_CONFIG['database'],
          DB_CONFIG['username'],
          DB_CONFIG['password']
      )
      
b57c6eb4   tangwang   offline tasks: fi...
247
248
249
250
      # 获取活跃商品
      log_processing_step(logger, "获取最近1年有过行为的商品")
      active_items = get_active_items(engine)
      logger.info(f"找到 {len(active_items)} 个活跃商品")
5ab1c29c   tangwang   first commit
251
      
b57c6eb4   tangwang   offline tasks: fi...
252
253
254
255
      # 连接ES
      log_processing_step(logger, "连接Elasticsearch")
      es = connect_es()
      logger.info("ES连接成功")
5ab1c29c   tangwang   first commit
256
      
b57c6eb4   tangwang   offline tasks: fi...
257
258
      # 生成两份相似度索引
      date_str = datetime.now().strftime("%Y%m%d")
5ab1c29c   tangwang   first commit
259
      
b57c6eb4   tangwang   offline tasks: fi...
260
261
262
263
      # 1. 基于名称文本向量
      log_processing_step(logger, "生成基于名称文本向量的相似索引")
      name_result = generate_similarity_index(
          es, active_items, 'embedding_name_zh', 'name', logger
5ab1c29c   tangwang   first commit
264
      )
b57c6eb4   tangwang   offline tasks: fi...
265
266
      name_output = os.path.join(OUTPUT_DIR, f'i2i_content_name_{date_str}.txt')
      save_index_file(name_result, es, name_output, logger)
5ab1c29c   tangwang   first commit
267
      
b57c6eb4   tangwang   offline tasks: fi...
268
269
270
271
272
273
274
      # 2. 基于图片向量
      log_processing_step(logger, "生成基于图片向量的相似索引")
      pic_result = generate_similarity_index(
          es, active_items, 'embedding_pic_h14', 'pic', logger
      )
      pic_output = os.path.join(OUTPUT_DIR, f'i2i_content_pic_{date_str}.txt')
      save_index_file(pic_result, es, pic_output, logger)
14f3dcbe   tangwang   offline tasks
275
      
b57c6eb4   tangwang   offline tasks: fi...
276
277
278
279
280
      logger.info("="*80)
      logger.info("完成!生成了两份内容相似索引:")
      logger.info(f"  1. 名称向量索引: {name_output} ({len(name_result)} 个商品)")
      logger.info(f"  2. 图片向量索引: {pic_output} ({len(pic_result)} 个商品)")
      logger.info("="*80)
5ab1c29c   tangwang   first commit
281
282
283
284
  
  
  if __name__ == '__main__':
      main()