Blame view

offline_tasks/scripts/interest_aggregation.py 14.8 KB
5ab1c29c   tangwang   first commit
1
2
3
4
  """
  兴趣点聚合索引生成
  按照多个维度(平台、国家、客户类型、分类、列表类型)生成商品索引
  """
5ab1c29c   tangwang   first commit
5
6
  import pandas as pd
  import math
e89d7a84   tangwang   deepwalk refactor...
7
  import os
5ab1c29c   tangwang   first commit
8
9
10
11
12
  import argparse
  import json
  from datetime import datetime, timedelta
  from collections import defaultdict, Counter
  from db_service import create_db_connection
c9f77c8f   tangwang   deepwalk refactor...
13
  from config.offline_config import (
5ab1c29c   tangwang   first commit
14
15
16
      DB_CONFIG, OUTPUT_DIR, INTEREST_AGGREGATION_CONFIG, get_time_range,
      DEFAULT_LOOKBACK_DAYS, DEFAULT_RECENT_DAYS, DEFAULT_INTEREST_TOP_N
  )
c9f77c8f   tangwang   deepwalk refactor...
17
  from scripts.debug_utils import (
14f3dcbe   tangwang   offline tasks
18
19
20
21
      setup_debug_logger, log_dataframe_info, log_dict_stats,
      save_readable_index, fetch_name_mappings, log_algorithm_params,
      log_processing_step
  )
5ab1c29c   tangwang   first commit
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  
  
  def calculate_time_weight(event_time, reference_time, decay_factor=0.95, days_unit=30):
      """
      计算时间衰减权重
      
      Args:
          event_time: 事件发生时间
          reference_time: 参考时间(当前时间)
          decay_factor: 衰减因子
          days_unit: 衰减单位(天)
      
      Returns:
          时间权重
      """
      if pd.isna(event_time):
          return 1.0
      
      time_diff = (reference_time - event_time).days
      if time_diff < 0:
          return 1.0
      
      # 计算衰减权重
      periods = time_diff / days_unit
      weight = math.pow(decay_factor, periods)
      return weight
  
  
  def aggregate_by_dimensions(df, behavior_weights, time_decay=True, decay_factor=0.95):
      """
      按多维度聚合商品
      
      Args:
          df: DataFrame with necessary columns
          behavior_weights: 行为权重字典
          time_decay: 是否使用时间衰减
          decay_factor: 时间衰减因子
      
      Returns:
          Dict: {dimension_key: {item_id: score}}
      """
      reference_time = datetime.now()
      
      # 添加行为权重
      df['behavior_weight'] = df['event_type'].map(behavior_weights).fillna(1.0)
      
      # 添加时间权重
      if time_decay:
          df['time_weight'] = df['create_time'].apply(
              lambda x: calculate_time_weight(x, reference_time, decay_factor)
          )
      else:
          df['time_weight'] = 1.0
      
      # 计算最终权重
      df['final_weight'] = df['behavior_weight'] * df['time_weight']
      
      # 初始化聚合结果
      aggregations = defaultdict(lambda: defaultdict(float))
      
      # 遍历数据,按不同维度聚合
      for _, row in df.iterrows():
          item_id = row['item_id']
          weight = row['final_weight']
          
          # 维度1: 业务平台 (business_platform)
          if pd.notna(row.get('platform')):
              key = f"platform:{row['platform']}"
              aggregations[key][item_id] += weight
          
          # 维度2: 客户端平台 (client_platform)
          if pd.notna(row.get('client_platform')):
              key = f"client_platform:{row['client_platform']}"
              aggregations[key][item_id] += weight
          
          # 维度3: 供应商 (supplier_id)
          if pd.notna(row.get('supplier_id')):
              key = f"supplier:{row['supplier_id']}"
              aggregations[key][item_id] += weight
          
          # 维度4: 一级分类 (category_level1)
          if pd.notna(row.get('category_level1_id')):
              key = f"category_level1:{row['category_level1_id']}"
              aggregations[key][item_id] += weight
          
          # 维度5: 二级分类 (category_level2)
          if pd.notna(row.get('category_level2_id')):
              key = f"category_level2:{row['category_level2_id']}"
              aggregations[key][item_id] += weight
          
          # 维度6: 三级分类 (category_level3)
          if pd.notna(row.get('category_level3_id')):
              key = f"category_level3:{row['category_level3_id']}"
              aggregations[key][item_id] += weight
          
          # 维度7: 四级分类 (category_level4)
          if pd.notna(row.get('category_level4_id')):
              key = f"category_level4:{row['category_level4_id']}"
              aggregations[key][item_id] += weight
          
          # 组合维度: 业务平台 + 客户端平台
          if pd.notna(row.get('platform')) and pd.notna(row.get('client_platform')):
              key = f"platform_client:{row['platform']}_{row['client_platform']}"
              aggregations[key][item_id] += weight
          
          # 组合维度: 平台 + 二级分类
          if pd.notna(row.get('platform')) and pd.notna(row.get('category_level2_id')):
              key = f"platform_category2:{row['platform']}_{row['category_level2_id']}"
              aggregations[key][item_id] += weight
          
          # 组合维度: 平台 + 三级分类
          if pd.notna(row.get('platform')) and pd.notna(row.get('category_level3_id')):
              key = f"platform_category3:{row['platform']}_{row['category_level3_id']}"
              aggregations[key][item_id] += weight
          
          # 组合维度: 客户端平台 + 二级分类
          if pd.notna(row.get('client_platform')) and pd.notna(row.get('category_level2_id')):
              key = f"client_category2:{row['client_platform']}_{row['category_level2_id']}"
              aggregations[key][item_id] += weight
      
      return aggregations
  
  
  def generate_list_type_indices(df_hot, df_cart, df_new, behavior_weights):
      """
      生成不同列表类型的索引(热门、加购、新品)
      
      Args:
          df_hot: 热门商品数据
          df_cart: 加购商品数据
          df_new: 新品数据
          behavior_weights: 行为权重
      
      Returns:
          Dict: {list_type: aggregations}
      """
      list_type_indices = {}
      
      # 热门商品索引
      if not df_hot.empty:
          print("Generating hot item indices...")
9832fef6   tangwang   offline tasks
163
          # B2B低频场景,不使用时间衰减
5ab1c29c   tangwang   first commit
164
          list_type_indices['hot'] = aggregate_by_dimensions(
9832fef6   tangwang   offline tasks
165
              df_hot, behavior_weights, time_decay=False
5ab1c29c   tangwang   first commit
166
167
168
169
170
          )
      
      # 加购商品索引
      if not df_cart.empty:
          print("Generating cart item indices...")
9832fef6   tangwang   offline tasks
171
          # B2B低频场景,不使用时间衰减
5ab1c29c   tangwang   first commit
172
          list_type_indices['cart'] = aggregate_by_dimensions(
9832fef6   tangwang   offline tasks
173
              df_cart, behavior_weights, time_decay=False
5ab1c29c   tangwang   first commit
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
          )
      
      # 新品索引
      if not df_new.empty:
          print("Generating new item indices...")
          # 新品不使用时间衰减,因为新品本身就是时间敏感的
          list_type_indices['new'] = aggregate_by_dimensions(
              df_new, behavior_weights, time_decay=False
          )
      
      return list_type_indices
  
  
  def output_indices(aggregations, output_prefix, top_n=1000):
      """
      输出索引到文件
      
      Args:
          aggregations: 聚合结果 {dimension_key: {item_id: score}}
          output_prefix: 输出文件前缀
          top_n: 每个维度输出前N个商品
      """
      output_file = os.path.join(OUTPUT_DIR, f'{output_prefix}_{datetime.now().strftime("%Y%m%d")}.txt')
      
      print(f"Writing indices to {output_file}...")
      with open(output_file, 'w', encoding='utf-8') as f:
          for dim_key, items in aggregations.items():
              # 按分数排序,取前N个
              sorted_items = sorted(items.items(), key=lambda x: -x[1])[:top_n]
              
              if not sorted_items:
                  continue
              
              # 格式:dimension_key \t item_id1:score1,item_id2:score2,...
              items_str = ','.join([f'{item_id}:{score:.4f}' for item_id, score in sorted_items])
              f.write(f'{dim_key}\t{items_str}\n')
      
      print(f"Output saved to: {output_file}")
      print(f"Generated indices for {len(aggregations)} dimension keys")
  
  
  def main():
      parser = argparse.ArgumentParser(description='Generate interest aggregation indices')
      parser.add_argument('--top_n', type=int, default=DEFAULT_INTEREST_TOP_N,
                         help=f'Top N items per dimension (default: {DEFAULT_INTEREST_TOP_N})')
      parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
                         help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
      parser.add_argument('--recent_days', type=int, default=DEFAULT_RECENT_DAYS,
                         help=f'Recent days for hot items (default: {DEFAULT_RECENT_DAYS})')
      parser.add_argument('--new_days', type=int, default=DEFAULT_RECENT_DAYS,
                         help=f'Days for new items (default: {DEFAULT_RECENT_DAYS})')
      parser.add_argument('--decay_factor', type=float, default=INTEREST_AGGREGATION_CONFIG['time_decay_factor'],
                         help='Time decay factor')
      parser.add_argument('--output_prefix', type=str, default='interest_aggregation',
                         help='Output file prefix')
1721766b   tangwang   offline tasks
229
230
      parser.add_argument('--debug', action='store_true',
                         help='Enable debug mode with detailed logging and readable output')
5ab1c29c   tangwang   first commit
231
232
233
      
      args = parser.parse_args()
      
14f3dcbe   tangwang   offline tasks
234
235
236
237
238
239
240
241
242
243
244
245
246
247
      # 设置logger
      logger = setup_debug_logger('interest_aggregation', debug=args.debug)
      
      # 记录算法参数
      params = {
          'top_n': args.top_n,
          'lookback_days': args.lookback_days,
          'recent_days': args.recent_days,
          'new_days': args.new_days,
          'decay_factor': args.decay_factor,
          'debug': args.debug
      }
      log_algorithm_params(logger, params)
      
5ab1c29c   tangwang   first commit
248
      # 创建数据库连接
14f3dcbe   tangwang   offline tasks
249
      logger.info("连接数据库...")
5ab1c29c   tangwang   first commit
250
251
252
253
254
255
256
257
258
259
260
261
262
      engine = create_db_connection(
          DB_CONFIG['host'],
          DB_CONFIG['port'],
          DB_CONFIG['database'],
          DB_CONFIG['username'],
          DB_CONFIG['password']
      )
      
      # 获取时间范围
      start_date, end_date = get_time_range(args.lookback_days)
      recent_start_date, _ = get_time_range(args.recent_days)
      new_start_date, _ = get_time_range(args.new_days)
      
14f3dcbe   tangwang   offline tasks
263
264
265
      logger.info(f"获取数据范围:{start_date} 到 {end_date}")
      logger.debug(f"热门商品起始日期:{recent_start_date}")
      logger.debug(f"新品起始日期:{new_start_date}")
5ab1c29c   tangwang   first commit
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      
      # SQL查询 - 获取用户行为数据(包含用户特征和商品分类)
      sql_query = f"""
      SELECT 
          se.anonymous_id AS user_id,
          se.item_id,
          se.event AS event_type,
          se.create_time,
          pgs.name AS item_name,
          pgs.create_time AS item_create_time,
          se.business_platform AS platform,
          se.client_platform,
          pg.supplier_id,
          pg.category_id,
          pc_1.id as category_level1_id,
          pc_2.id as category_level2_id,
          pc_3.id as category_level3_id,
          pc_4.id as category_level4_id
      FROM 
          sensors_events se
      LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
      LEFT JOIN prd_goods pg ON pg.id = pgs.goods_id
      LEFT JOIN prd_category as pc ON pc.id = pg.category_id
      LEFT JOIN prd_category AS pc_1 ON pc_1.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 2), '.', -1)
      LEFT JOIN prd_category AS pc_2 ON pc_2.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 3), '.', -1)
      LEFT JOIN prd_category AS pc_3 ON pc_3.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 4), '.', -1)
      LEFT JOIN prd_category AS pc_4 ON pc_4.id = SUBSTRING_INDEX(SUBSTRING_INDEX(pc.path, '.', 5), '.', -1)
      WHERE 
          se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
          AND se.create_time >= '{start_date}'
          AND se.create_time <= '{end_date}'
          AND se.item_id IS NOT NULL
      ORDER BY 
          se.create_time
      """
      
14f3dcbe   tangwang   offline tasks
302
      logger.info("执行SQL查询...")
5ab1c29c   tangwang   first commit
303
      df = pd.read_sql(sql_query, engine)
14f3dcbe   tangwang   offline tasks
304
305
      logger.info(f"获取到 {len(df)} 条记录")
      
53fd5f08   tangwang   部分文件id格式不对 fix
306
307
308
309
310
311
312
313
      # 确保ID为整数类型
      df['item_id'] = df['item_id'].astype(int)
      df['user_id'] = df['user_id'].astype(str)
      if 'category_id' in df.columns:
          df['category_id'] = df['category_id'].astype(int)
      if 'supplier_id' in df.columns:
          df['supplier_id'] = df['supplier_id'].astype(int)
      
14f3dcbe   tangwang   offline tasks
314
315
      # 记录数据信息
      log_dataframe_info(logger, df, "用户行为数据")
5ab1c29c   tangwang   first commit
316
317
318
319
320
321
322
      
      # 转换时间列
      df['create_time'] = pd.to_datetime(df['create_time'])
      df['item_create_time'] = pd.to_datetime(df['item_create_time'], errors='coerce')
      
      # 定义行为权重
      behavior_weights = INTEREST_AGGREGATION_CONFIG['behavior_weights']
14f3dcbe   tangwang   offline tasks
323
      logger.debug(f"行为权重: {behavior_weights}")
5ab1c29c   tangwang   first commit
324
325
      
      # 准备不同类型的数据集
14f3dcbe   tangwang   offline tasks
326
      log_processing_step(logger, "准备不同类型的数据集")
5ab1c29c   tangwang   first commit
327
328
329
      
      # 1. 热门商品:最近N天的高交互商品
      df_hot = df[df['create_time'] >= recent_start_date].copy()
14f3dcbe   tangwang   offline tasks
330
      logger.info(f"热门商品数据集:{len(df_hot)} 条记录")
5ab1c29c   tangwang   first commit
331
332
333
      
      # 2. 加购商品:加购行为
      df_cart = df[df['event_type'].isin(['addToCart', 'addToPool'])].copy()
14f3dcbe   tangwang   offline tasks
334
      logger.info(f"加购商品数据集:{len(df_cart)} 条记录")
5ab1c29c   tangwang   first commit
335
336
337
      
      # 3. 新品:商品创建时间在最近N天内
      df_new = df[df['item_create_time'] >= new_start_date].copy()
14f3dcbe   tangwang   offline tasks
338
      logger.info(f"新品数据集:{len(df_new)} 条记录")
5ab1c29c   tangwang   first commit
339
340
      
      # 生成不同列表类型的索引
14f3dcbe   tangwang   offline tasks
341
      log_processing_step(logger, "生成不同列表类型的索引")
5ab1c29c   tangwang   first commit
342
343
344
      list_type_indices = generate_list_type_indices(
          df_hot, df_cart, df_new, behavior_weights
      )
14f3dcbe   tangwang   offline tasks
345
346
347
348
349
350
351
      logger.info(f"生成了 {len(list_type_indices)} 种列表类型的索引")
      
      # 获取name mappings用于debug输出
      name_mappings = {}
      if args.debug:
          logger.info("获取物品名称映射...")
          name_mappings = fetch_name_mappings(engine, debug=True)
5ab1c29c   tangwang   first commit
352
353
      
      # 输出索引
14f3dcbe   tangwang   offline tasks
354
      log_processing_step(logger, "保存索引文件")
5ab1c29c   tangwang   first commit
355
356
      for list_type, aggregations in list_type_indices.items():
          output_prefix = f'{args.output_prefix}_{list_type}'
14f3dcbe   tangwang   offline tasks
357
          logger.info(f"保存 {list_type} 类型的索引...")
5ab1c29c   tangwang   first commit
358
          output_indices(aggregations, output_prefix, top_n=args.top_n)
14f3dcbe   tangwang   offline tasks
359
360
361
362
363
          
          # 如果启用debug模式,保存可读格式
          if args.debug and aggregations:
              for dim_key, items in aggregations.items():
                  if items:
40442baf   tangwang   offline tasks: fi...
364
365
366
                      # 为每个维度生成可读索引 - 先排序再取前N个
                      sorted_items = sorted(items.items(), key=lambda x: -x[1])[:args.top_n]
                      result_dict = {dim_key: sorted_items}
14f3dcbe   tangwang   offline tasks
367
368
369
370
371
372
                      output_file = os.path.join(OUTPUT_DIR, f'{output_prefix}_{dim_key}_{datetime.now().strftime("%Y%m%d")}.txt')
                      if os.path.exists(output_file):
                          save_readable_index(
                              output_file,
                              result_dict,
                              name_mappings,
40442baf   tangwang   offline tasks: fi...
373
                              description=f'interest:{list_type}:{dim_key}'
14f3dcbe   tangwang   offline tasks
374
                          )
5ab1c29c   tangwang   first commit
375
376
      
      # 生成全局索引(所有数据)
14f3dcbe   tangwang   offline tasks
377
      log_processing_step(logger, "生成全局索引")
9832fef6   tangwang   offline tasks
378
      # B2B低频场景,不使用时间衰减
5ab1c29c   tangwang   first commit
379
      global_aggregations = aggregate_by_dimensions(
9832fef6   tangwang   offline tasks
380
          df, behavior_weights, time_decay=False, decay_factor=args.decay_factor
5ab1c29c   tangwang   first commit
381
      )
14f3dcbe   tangwang   offline tasks
382
      logger.info("保存全局索引...")
5ab1c29c   tangwang   first commit
383
384
      output_indices(global_aggregations, f'{args.output_prefix}_global', top_n=args.top_n)
      
14f3dcbe   tangwang   offline tasks
385
386
387
      logger.info("="*80)
      logger.info("所有索引生成完成!")
      logger.info("="*80)
5ab1c29c   tangwang   first commit
388
389
390
391
  
  
  if __name__ == '__main__':
      main()