Blame view

offline_tasks/scripts/i2i_deepwalk.py 14 KB
5ab1c29c   tangwang   first commit
1
2
3
  """
  i2i - DeepWalk算法实现
  基于用户-物品图结构训练DeepWalk模型,获取物品向量相似度
0e45f702   tangwang   deepwalk refactor...
4
  复用 graphembedding/deepwalk/ 的高效实现
5ab1c29c   tangwang   first commit
5
  """
5ab1c29c   tangwang   first commit
6
7
  import pandas as pd
  import argparse
0e45f702   tangwang   deepwalk refactor...
8
  import os
5ab1c29c   tangwang   first commit
9
10
11
  from datetime import datetime
  from collections import defaultdict
  from gensim.models import Word2Vec
5ab1c29c   tangwang   first commit
12
  from db_service import create_db_connection
c9f77c8f   tangwang   deepwalk refactor...
13
  from config.offline_config import (
5ab1c29c   tangwang   first commit
14
15
16
      DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
      DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
  )
c9f77c8f   tangwang   deepwalk refactor...
17
  from scripts.debug_utils import (
0e45f702   tangwang   deepwalk refactor...
18
      setup_debug_logger, log_dataframe_info,
14f3dcbe   tangwang   offline tasks
19
20
21
      save_readable_index, fetch_name_mappings, log_algorithm_params,
      log_processing_step
  )
5ab1c29c   tangwang   first commit
22
  
0e45f702   tangwang   deepwalk refactor...
23
  # 导入 DeepWalk 实现
c9f77c8f   tangwang   deepwalk refactor...
24
  from deepwalk.deepwalk import DeepWalk
0e45f702   tangwang   deepwalk refactor...
25
  
5ab1c29c   tangwang   first commit
26
  
0e45f702   tangwang   deepwalk refactor...
27
  def build_edge_file_from_db(df, behavior_weights, output_path, logger):
5ab1c29c   tangwang   first commit
28
      """
0e45f702   tangwang   deepwalk refactor...
29
30
      从数据库数据构建边文件
      边文件格式: item_id \t neighbor_id1:weight1,neighbor_id2:weight2,...
5ab1c29c   tangwang   first commit
31
32
33
34
      
      Args:
          df: DataFrame with columns: user_id, item_id, event_type
          behavior_weights: 行为权重字典
0e45f702   tangwang   deepwalk refactor...
35
36
          output_path: 边文件输出路径
          logger: 日志对象
5ab1c29c   tangwang   first commit
37
      """
0e45f702   tangwang   deepwalk refactor...
38
39
      logger.info("开始构建物品图...")
      
5ab1c29c   tangwang   first commit
40
41
42
43
44
45
46
47
      # 构建用户-物品列表
      user_items = defaultdict(list)
      
      for _, row in df.iterrows():
          user_id = row['user_id']
          item_id = str(row['item_id'])
          event_type = row['event_type']
          weight = behavior_weights.get(event_type, 1.0)
5ab1c29c   tangwang   first commit
48
49
          user_items[user_id].append((item_id, weight))
      
0e45f702   tangwang   deepwalk refactor...
50
51
      logger.info(f"共有 {len(user_items)} 个用户")
      
5ab1c29c   tangwang   first commit
52
53
54
55
      # 构建物品图边
      edge_dict = defaultdict(lambda: defaultdict(float))
      
      for user_id, items in user_items.items():
0e45f702   tangwang   deepwalk refactor...
56
57
58
59
60
          # 限制每个用户的物品数量,避免内存爆炸
          if len(items) > 100:
              # 按权重排序,只保留前100个
              items = sorted(items, key=lambda x: -x[1])[:100]
          
5ab1c29c   tangwang   first commit
61
62
63
64
65
66
67
68
69
70
71
          # 物品两两组合,构建边
          for i in range(len(items)):
              item_i, weight_i = items[i]
              for j in range(i + 1, len(items)):
                  item_j, weight_j = items[j]
                  
                  # 边的权重为两个物品权重的平均值
                  edge_weight = (weight_i + weight_j) / 2.0
                  edge_dict[item_i][item_j] += edge_weight
                  edge_dict[item_j][item_i] += edge_weight
      
0e45f702   tangwang   deepwalk refactor...
72
      logger.info(f"构建物品图完成,共 {len(edge_dict)} 个节点")
5ab1c29c   tangwang   first commit
73
      
0e45f702   tangwang   deepwalk refactor...
74
75
      # 保存边文件
      logger.info(f"保存边文件到 {output_path}")
5ab1c29c   tangwang   first commit
76
77
      with open(output_path, 'w', encoding='utf-8') as f:
          for item_id, neighbors in edge_dict.items():
5ab1c29c   tangwang   first commit
78
79
80
              neighbor_str = ','.join([f'{nbr}:{weight:.4f}' for nbr, weight in neighbors.items()])
              f.write(f'{item_id}\t{neighbor_str}\n')
      
0e45f702   tangwang   deepwalk refactor...
81
82
      logger.info(f"边文件保存完成")
      return len(edge_dict)
5ab1c29c   tangwang   first commit
83
84
  
  
0e45f702   tangwang   deepwalk refactor...
85
  def train_word2vec_from_walks(walks_file, config, logger):
5ab1c29c   tangwang   first commit
86
      """
0e45f702   tangwang   deepwalk refactor...
87
      从游走文件训练Word2Vec模型
5ab1c29c   tangwang   first commit
88
89
      
      Args:
0e45f702   tangwang   deepwalk refactor...
90
91
92
          walks_file: 游走序列文件路径
          config: Word2Vec配置
          logger: 日志对象
5ab1c29c   tangwang   first commit
93
94
      
      Returns:
0e45f702   tangwang   deepwalk refactor...
95
          Word2Vec模型
5ab1c29c   tangwang   first commit
96
      """
0e45f702   tangwang   deepwalk refactor...
97
      logger.info(f"从 {walks_file} 读取游走序列...")
5ab1c29c   tangwang   first commit
98
      
0e45f702   tangwang   deepwalk refactor...
99
100
101
102
103
      # 读取游走序列
      sentences = []
      with open(walks_file, 'r', encoding='utf-8') as f:
          for line in f:
              walk = line.strip().split()
5ab1c29c   tangwang   first commit
104
              if len(walk) >= 2:
0e45f702   tangwang   deepwalk refactor...
105
                  sentences.append(walk)
5ab1c29c   tangwang   first commit
106
      
0e45f702   tangwang   deepwalk refactor...
107
      logger.info(f"共读取 {len(sentences)} 条游走序列")
5ab1c29c   tangwang   first commit
108
      
0e45f702   tangwang   deepwalk refactor...
109
110
      # 训练Word2Vec
      logger.info("开始训练Word2Vec模型...")
5ab1c29c   tangwang   first commit
111
      model = Word2Vec(
0e45f702   tangwang   deepwalk refactor...
112
          sentences=sentences,
5ab1c29c   tangwang   first commit
113
114
115
116
117
118
119
120
121
          vector_size=config['vector_size'],
          window=config['window_size'],
          min_count=config['min_count'],
          workers=config['workers'],
          sg=config['sg'],
          epochs=config['epochs'],
          seed=42
      )
      
0e45f702   tangwang   deepwalk refactor...
122
      logger.info(f"训练完成。词汇表大小:{len(model.wv)}")
5ab1c29c   tangwang   first commit
123
124
125
      return model
  
  
0e45f702   tangwang   deepwalk refactor...
126
  def generate_similarities(model, top_n, logger):
5ab1c29c   tangwang   first commit
127
      """
0e45f702   tangwang   deepwalk refactor...
128
      Word2Vec模型生成物品相似度
5ab1c29c   tangwang   first commit
129
130
131
132
      
      Args:
          model: Word2Vec模型
          top_n: Top N similar items
0e45f702   tangwang   deepwalk refactor...
133
          logger: 日志对象
5ab1c29c   tangwang   first commit
134
135
136
137
      
      Returns:
          Dict[item_id, List[Tuple(similar_item_id, score)]]
      """
0e45f702   tangwang   deepwalk refactor...
138
      logger.info("生成相似度...")
5ab1c29c   tangwang   first commit
139
140
141
142
143
144
145
146
147
      result = {}
      
      for item_id in model.wv.index_to_key:
          try:
              similar_items = model.wv.most_similar(item_id, topn=top_n)
              result[item_id] = [(sim_id, float(score)) for sim_id, score in similar_items]
          except KeyError:
              continue
      
0e45f702   tangwang   deepwalk refactor...
148
      logger.info(f"为 {len(result)} 个物品生成了相似度")
5ab1c29c   tangwang   first commit
149
150
151
      return result
  
  
0e45f702   tangwang   deepwalk refactor...
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  def save_results(result, output_file, name_mappings, logger):
      """
      保存相似度结果到文件
      
      Args:
          result: 相似度字典
          output_file: 输出文件路径
          name_mappings: ID到名称的映射
          logger: 日志对象
      """
      logger.info(f"保存结果到 {output_file}...")
      
      with open(output_file, 'w', encoding='utf-8') as f:
          for item_id, sims in result.items():
              # 获取物品名称
              item_name = name_mappings.get(int(item_id), 'Unknown') if item_id.isdigit() else 'Unknown'
              
              if not sims:
                  continue
              
              # 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
              sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in sims])
              f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
      
      logger.info(f"结果保存完成")
  
  
5ab1c29c   tangwang   first commit
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  def main():
      parser = argparse.ArgumentParser(description='Run DeepWalk for i2i similarity')
      parser.add_argument('--num_walks', type=int, default=I2I_CONFIG['deepwalk']['num_walks'],
                         help='Number of walks per node')
      parser.add_argument('--walk_length', type=int, default=I2I_CONFIG['deepwalk']['walk_length'],
                         help='Walk length')
      parser.add_argument('--window_size', type=int, default=I2I_CONFIG['deepwalk']['window_size'],
                         help='Window size for Word2Vec')
      parser.add_argument('--vector_size', type=int, default=I2I_CONFIG['deepwalk']['vector_size'],
                         help='Vector size for Word2Vec')
      parser.add_argument('--min_count', type=int, default=I2I_CONFIG['deepwalk']['min_count'],
                         help='Minimum word count')
      parser.add_argument('--workers', type=int, default=I2I_CONFIG['deepwalk']['workers'],
                         help='Number of workers')
      parser.add_argument('--epochs', type=int, default=I2I_CONFIG['deepwalk']['epochs'],
                         help='Number of epochs')
      parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
                         help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
      parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
                         help=f'Number of days to look back (default: {DEFAULT_LOOKBACK_DAYS})')
      parser.add_argument('--output', type=str, default=None,
                         help='Output file path')
      parser.add_argument('--save_model', action='store_true',
                         help='Save Word2Vec model')
      parser.add_argument('--save_graph', action='store_true',
                         help='Save graph edge file')
1721766b   tangwang   offline tasks
205
206
      parser.add_argument('--debug', action='store_true',
                         help='Enable debug mode with detailed logging and readable output')
0e45f702   tangwang   deepwalk refactor...
207
208
209
210
      parser.add_argument('--use_softmax', action='store_true',
                         help='Use softmax-based alias sampling (default: False)')
      parser.add_argument('--temperature', type=float, default=1.0,
                         help='Temperature for softmax (default: 1.0)')
5ab1c29c   tangwang   first commit
211
212
213
      
      args = parser.parse_args()
      
14f3dcbe   tangwang   offline tasks
214
215
216
217
218
219
220
221
222
223
224
225
226
227
      # 设置logger
      logger = setup_debug_logger('i2i_deepwalk', debug=args.debug)
      
      # 记录算法参数
      params = {
          'num_walks': args.num_walks,
          'walk_length': args.walk_length,
          'window_size': args.window_size,
          'vector_size': args.vector_size,
          'min_count': args.min_count,
          'workers': args.workers,
          'epochs': args.epochs,
          'top_n': args.top_n,
          'lookback_days': args.lookback_days,
0e45f702   tangwang   deepwalk refactor...
228
229
230
          'debug': args.debug,
          'use_softmax': args.use_softmax,
          'temperature': args.temperature
14f3dcbe   tangwang   offline tasks
231
232
233
      }
      log_algorithm_params(logger, params)
      
0e45f702   tangwang   deepwalk refactor...
234
235
236
237
238
239
240
241
242
243
244
245
246
      # 创建临时目录
      temp_dir = os.path.join(OUTPUT_DIR, 'temp')
      os.makedirs(temp_dir, exist_ok=True)
      
      date_str = datetime.now().strftime('%Y%m%d')
      edge_file = os.path.join(temp_dir, f'item_graph_{date_str}.txt')
      walks_file = os.path.join(temp_dir, f'walks_{date_str}.txt')
      
      # ============================================================
      # 步骤1: 从数据库获取数据并构建边文件
      # ============================================================
      log_processing_step(logger, "从数据库获取数据")
      
5ab1c29c   tangwang   first commit
247
      # 创建数据库连接
14f3dcbe   tangwang   offline tasks
248
      logger.info("连接数据库...")
5ab1c29c   tangwang   first commit
249
250
251
252
253
254
255
256
257
258
      engine = create_db_connection(
          DB_CONFIG['host'],
          DB_CONFIG['port'],
          DB_CONFIG['database'],
          DB_CONFIG['username'],
          DB_CONFIG['password']
      )
      
      # 获取时间范围
      start_date, end_date = get_time_range(args.lookback_days)
14f3dcbe   tangwang   offline tasks
259
      logger.info(f"获取数据范围:{start_date} 到 {end_date}")
5ab1c29c   tangwang   first commit
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
      
      # SQL查询 - 获取用户行为数据
      sql_query = f"""
      SELECT 
          se.anonymous_id AS user_id,
          se.item_id,
          se.event AS event_type,
          pgs.name AS item_name
      FROM 
          sensors_events se
      LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
      WHERE 
          se.event IN ('click', 'contactFactory', 'addToPool', 'addToCart', 'purchase')
          AND se.create_time >= '{start_date}'
          AND se.create_time <= '{end_date}'
          AND se.item_id IS NOT NULL
          AND se.anonymous_id IS NOT NULL
      """
      
14f3dcbe   tangwang   offline tasks
279
      logger.info("执行SQL查询...")
5ab1c29c   tangwang   first commit
280
      df = pd.read_sql(sql_query, engine)
14f3dcbe   tangwang   offline tasks
281
282
      logger.info(f"获取到 {len(df)} 条记录")
      
0b73c877   tangwang   fix
283
284
285
286
      # 确保ID为整数类型
      df['item_id'] = df['item_id'].astype(int)
      df['user_id'] = df['user_id'].astype(str)
      
14f3dcbe   tangwang   offline tasks
287
288
      # 记录数据信息
      log_dataframe_info(logger, df, "用户行为数据")
5ab1c29c   tangwang   first commit
289
290
291
292
293
294
295
296
297
      
      # 定义行为权重
      behavior_weights = {
          'click': 1.0,
          'contactFactory': 5.0,
          'addToPool': 2.0,
          'addToCart': 3.0,
          'purchase': 10.0
      }
14f3dcbe   tangwang   offline tasks
298
      logger.debug(f"行为权重: {behavior_weights}")
5ab1c29c   tangwang   first commit
299
      
0e45f702   tangwang   deepwalk refactor...
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
      # 构建边文件
      log_processing_step(logger, "构建边文件")
      num_nodes = build_edge_file_from_db(df, behavior_weights, edge_file, logger)
      
      # ============================================================
      # 步骤2: 使用DeepWalk进行随机游走
      # ============================================================
      log_processing_step(logger, "执行DeepWalk随机游走")
      
      logger.info("初始化DeepWalk...")
      deepwalk = DeepWalk(
          edge_file=edge_file,
          node_tag_file=None,  # 不使用标签游走
          use_softmax=args.use_softmax,
          temperature=args.temperature,
          p_tag_walk=0.0  # 不使用标签游走
      )
5ab1c29c   tangwang   first commit
317
      
0e45f702   tangwang   deepwalk refactor...
318
319
320
321
322
323
324
      logger.info("开始随机游走...")
      deepwalk.simulate_walks(
          num_walks=args.num_walks,
          walk_length=args.walk_length,
          workers=args.workers,
          output_file=walks_file
      )
5ab1c29c   tangwang   first commit
325
      
0e45f702   tangwang   deepwalk refactor...
326
327
328
      # ============================================================
      # 步骤3: 训练Word2Vec模型
      # ============================================================
14f3dcbe   tangwang   offline tasks
329
      log_processing_step(logger, "训练Word2Vec模型")
0e45f702   tangwang   deepwalk refactor...
330
      
5ab1c29c   tangwang   first commit
331
332
333
334
335
336
      w2v_config = {
          'vector_size': args.vector_size,
          'window_size': args.window_size,
          'min_count': args.min_count,
          'workers': args.workers,
          'epochs': args.epochs,
0e45f702   tangwang   deepwalk refactor...
337
          'sg': 1  # Skip-gram
5ab1c29c   tangwang   first commit
338
      }
14f3dcbe   tangwang   offline tasks
339
      logger.debug(f"Word2Vec配置: {w2v_config}")
5ab1c29c   tangwang   first commit
340
      
0e45f702   tangwang   deepwalk refactor...
341
      model = train_word2vec_from_walks(walks_file, w2v_config, logger)
5ab1c29c   tangwang   first commit
342
343
344
      
      # 保存模型(可选)
      if args.save_model:
0e45f702   tangwang   deepwalk refactor...
345
          model_path = os.path.join(OUTPUT_DIR, f'deepwalk_model_{date_str}.model')
5ab1c29c   tangwang   first commit
346
          model.save(model_path)
14f3dcbe   tangwang   offline tasks
347
          logger.info(f"模型已保存到 {model_path}")
5ab1c29c   tangwang   first commit
348
      
0e45f702   tangwang   deepwalk refactor...
349
350
351
      # ============================================================
      # 步骤4: 生成相似度
      # ============================================================
14f3dcbe   tangwang   offline tasks
352
      log_processing_step(logger, "生成相似度")
0e45f702   tangwang   deepwalk refactor...
353
      result = generate_similarities(model, args.top_n, logger)
5ab1c29c   tangwang   first commit
354
      
0e45f702   tangwang   deepwalk refactor...
355
356
357
      # ============================================================
      # 步骤5: 保存结果
      # ============================================================
14f3dcbe   tangwang   offline tasks
358
      log_processing_step(logger, "保存结果")
0e45f702   tangwang   deepwalk refactor...
359
360
      
      output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_deepwalk_{date_str}.txt')
5ab1c29c   tangwang   first commit
361
      
14f3dcbe   tangwang   offline tasks
362
363
364
365
366
367
      # 获取name mappings
      name_mappings = {}
      if args.debug:
          logger.info("获取物品名称映射...")
          name_mappings = fetch_name_mappings(engine, debug=True)
      
0e45f702   tangwang   deepwalk refactor...
368
      save_results(result, output_file, name_mappings, logger)
5ab1c29c   tangwang   first commit
369
      
0e45f702   tangwang   deepwalk refactor...
370
371
372
373
374
375
      logger.info(f"✓ DeepWalk完成!")
      logger.info(f"  - 输出文件: {output_file}")
      logger.info(f"  - 商品数: {len(result)}")
      if result:
          avg_sims = sum(len(sims) for sims in result.values()) / len(result)
          logger.info(f"  - 平均相似商品数: {avg_sims:.1f}")
14f3dcbe   tangwang   offline tasks
376
377
378
379
380
381
382
383
      
      # 如果启用debug模式,保存可读格式
      if args.debug:
          log_processing_step(logger, "保存Debug可读格式")
          save_readable_index(
              output_file,
              result,
              name_mappings,
40442baf   tangwang   offline tasks: fi...
384
              description='i2i:deepwalk'
14f3dcbe   tangwang   offline tasks
385
          )
0e45f702   tangwang   deepwalk refactor...
386
387
388
389
390
391
392
393
394
395
396
397
398
      
      # 清理临时文件(可选)
      if not args.save_graph:
          if os.path.exists(edge_file):
              os.remove(edge_file)
              logger.debug(f"已删除临时文件: {edge_file}")
      if os.path.exists(walks_file):
          os.remove(walks_file)
          logger.debug(f"已删除临时文件: {walks_file}")
      
      print(f"✓ DeepWalk相似度计算完成")
      print(f"  - 输出文件: {output_file}")
      print(f"  - 商品数: {len(result)}")
5ab1c29c   tangwang   first commit
399
400
401
402
  
  
  if __name__ == '__main__':
      main()