5ab1c29c
tangwang
first commit
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
"""
i2i - Swing算法实现
基于用户行为的物品相似度计算
参考item_sim.py的数据格式,适配真实数据
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
import pandas as pd
import math
from collections import defaultdict
import argparse
import json
from datetime import datetime, timedelta
from db_service import create_db_connection
from offline_tasks.config.offline_config import (
DB_CONFIG, OUTPUT_DIR, I2I_CONFIG, get_time_range,
DEFAULT_LOOKBACK_DAYS, DEFAULT_I2I_TOP_N
)
|
1721766b
tangwang
offline tasks
|
21
22
|
from offline_tasks.scripts.debug_utils import (
setup_debug_logger, log_dataframe_info, log_dict_stats,
|
12118125
tangwang
offline tasks: me...
|
23
|
save_readable_index, load_name_mappings_from_file, log_algorithm_params,
|
1721766b
tangwang
offline tasks
|
24
25
|
log_processing_step
)
|
5ab1c29c
tangwang
first commit
|
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
def calculate_time_weight(event_time, reference_time, decay_factor=0.95, days_unit=30):
"""
计算时间衰减权重
Args:
event_time: 事件发生时间
reference_time: 参考时间(通常是当前时间)
decay_factor: 衰减因子
days_unit: 衰减单位(天)
Returns:
时间权重
"""
if pd.isna(event_time):
return 1.0
time_diff = (reference_time - event_time).days
if time_diff < 0:
return 1.0
# 计算衰减权重
periods = time_diff / days_unit
weight = math.pow(decay_factor, periods)
return weight
|
12118125
tangwang
offline tasks: me...
|
54
|
def swing_algorithm(df, alpha=0.5, time_decay=True, decay_factor=0.95, use_daily_session=True, logger=None, debug=False):
|
5ab1c29c
tangwang
first commit
|
55
56
57
58
59
60
61
62
|
"""
Swing算法实现
Args:
df: DataFrame with columns: user_id, item_id, weight, create_time
alpha: Swing算法的alpha参数
time_decay: 是否使用时间衰减
decay_factor: 时间衰减因子
|
12118125
tangwang
offline tasks: me...
|
63
|
use_daily_session: 是否同时使用uid+日期作为session维度
|
1721766b
tangwang
offline tasks
|
64
65
|
logger: 日志记录器
debug: 是否开启debug模式
|
5ab1c29c
tangwang
first commit
|
66
67
68
69
|
Returns:
Dict[item_id, List[Tuple(similar_item_id, score)]]
"""
|
1721766b
tangwang
offline tasks
|
70
71
|
start_time = datetime.now()
if logger:
|
12118125
tangwang
offline tasks: me...
|
72
|
logger.debug(f"开始Swing算法计算,参数: alpha={alpha}, time_decay={time_decay}, use_daily_session={use_daily_session}")
|
1721766b
tangwang
offline tasks
|
73
|
|
5ab1c29c
tangwang
first commit
|
74
75
76
|
# 如果使用时间衰减,计算时间权重
reference_time = datetime.now()
if time_decay and 'create_time' in df.columns:
|
1721766b
tangwang
offline tasks
|
77
78
|
if logger:
logger.debug("应用时间衰减...")
|
5ab1c29c
tangwang
first commit
|
79
80
81
82
|
df['time_weight'] = df['create_time'].apply(
lambda x: calculate_time_weight(x, reference_time, decay_factor)
)
df['weight'] = df['weight'] * df['time_weight']
|
1721766b
tangwang
offline tasks
|
83
84
|
if logger and debug:
logger.debug(f"时间权重统计: min={df['time_weight'].min():.4f}, max={df['time_weight'].max():.4f}, avg={df['time_weight'].mean():.4f}")
|
5ab1c29c
tangwang
first commit
|
85
|
|
12118125
tangwang
offline tasks: me...
|
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
# 如果启用daily_session,duplicate数据:添加uid+date作为新的uid
if use_daily_session and 'create_time' in df.columns:
if logger:
logger.info("启用日期维度:duplicate数据,添加uid+日期作为新的session")
# 创建原始数据副本
df_original = df.copy()
# 创建uid+date版本
df_daily = df.copy()
df_daily['date'] = pd.to_datetime(df_daily['create_time']).dt.strftime('%Y%m%d')
df_daily['user_id'] = df_daily['user_id'].astype(str) + '_' + df_daily['date']
# 合并两份数据
df = pd.concat([df_original, df_daily], ignore_index=True)
if logger:
logger.info(f"原始数据: {len(df_original)} 条")
logger.info(f"日期维度数据: {len(df_daily)} 条")
logger.info(f"合并后总数据: {len(df)} 条")
|
5ab1c29c
tangwang
first commit
|
107
|
# 构建用户-物品倒排索引
|
1721766b
tangwang
offline tasks
|
108
109
110
|
if logger:
log_processing_step(logger, "步骤1: 构建用户-物品倒排索引")
|
5ab1c29c
tangwang
first commit
|
111
112
113
114
115
116
117
118
119
120
121
122
123
|
user_items = defaultdict(set)
item_users = defaultdict(set)
item_freq = defaultdict(float)
for _, row in df.iterrows():
user_id = row['user_id']
item_id = row['item_id']
weight = row['weight']
user_items[user_id].add(item_id)
item_users[item_id].add(user_id)
item_freq[item_id] += weight
|
1721766b
tangwang
offline tasks
|
124
125
126
127
128
|
if logger:
logger.info(f"总用户数: {len(user_items)}, 总商品数: {len(item_users)}")
if debug:
log_dict_stats(logger, dict(list(user_items.items())[:1000]), "用户-商品倒排索引(采样)", top_n=5)
log_dict_stats(logger, dict(list(item_users.items())[:1000]), "商品-用户倒排索引(采样)", top_n=5)
|
5ab1c29c
tangwang
first commit
|
129
130
|
# 计算物品相似度
|
1721766b
tangwang
offline tasks
|
131
132
133
|
if logger:
log_processing_step(logger, "步骤2: 计算Swing物品相似度")
|
5ab1c29c
tangwang
first commit
|
134
135
136
|
item_sim_dict = defaultdict(lambda: defaultdict(float))
# 遍历每个物品对
|
1721766b
tangwang
offline tasks
|
137
138
139
140
|
processed_pairs = 0
total_items = len(item_users)
for idx_i, item_i in enumerate(item_users):
|
5ab1c29c
tangwang
first commit
|
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
users_i = item_users[item_i]
# 找到所有与item_i共现的物品
for item_j in item_users:
if item_i >= item_j: # 避免重复计算
continue
users_j = item_users[item_j]
common_users = users_i & users_j
if len(common_users) < 2:
continue
# 计算Swing相似度
sim_score = 0.0
common_users_list = list(common_users)
for idx_u in range(len(common_users_list)):
user_u = common_users_list[idx_u]
items_u = user_items[user_u]
for idx_v in range(idx_u + 1, len(common_users_list)):
user_v = common_users_list[idx_v]
items_v = user_items[user_v]
# 计算用户u和用户v的共同物品数
common_items = items_u & items_v
# Swing公式
sim_score += 1.0 / (alpha + len(common_items))
item_sim_dict[item_i][item_j] = sim_score
item_sim_dict[item_j][item_i] = sim_score
|
1721766b
tangwang
offline tasks
|
174
175
176
177
178
179
180
181
|
processed_pairs += 1
# Debug: 显示处理进度
if logger and debug and (idx_i + 1) % 50 == 0:
logger.debug(f"已处理 {idx_i + 1}/{total_items} 个商品 ({(idx_i+1)/total_items*100:.1f}%)")
if logger:
logger.info(f"计算了 {processed_pairs} 对商品相似度")
|
5ab1c29c
tangwang
first commit
|
182
183
|
# 对相似度进行归一化并排序
|
1721766b
tangwang
offline tasks
|
184
185
186
|
if logger:
log_processing_step(logger, "步骤3: 整理和排序结果")
|
5ab1c29c
tangwang
first commit
|
187
188
189
190
|
result = {}
for item_i in item_sim_dict:
sims = item_sim_dict[item_i]
|
5ab1c29c
tangwang
first commit
|
191
192
193
194
|
# 按相似度排序
sorted_sims = sorted(sims.items(), key=lambda x: -x[1])
result[item_i] = sorted_sims
|
1721766b
tangwang
offline tasks
|
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
if logger:
total_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Swing算法完成: {len(result)} 个商品有相似推荐")
logger.info(f"总耗时: {total_time:.2f}秒")
# 统计每个商品的相似商品数
sim_counts = [len(sims) for sims in result.values()]
if sim_counts:
logger.info(f"相似商品数统计: min={min(sim_counts)}, max={max(sim_counts)}, avg={sum(sim_counts)/len(sim_counts):.2f}")
# 采样展示结果
if debug:
sample_results = list(result.items())[:3]
for item_i, sims in sample_results:
logger.debug(f" 商品 {item_i} 的Top5相似商品: {sims[:5]}")
|
5ab1c29c
tangwang
first commit
|
211
212
213
214
215
216
217
218
219
220
221
|
return result
def main():
parser = argparse.ArgumentParser(description='Run Swing algorithm for i2i similarity')
parser.add_argument('--alpha', type=float, default=I2I_CONFIG['swing']['alpha'],
help='Alpha parameter for Swing algorithm')
parser.add_argument('--top_n', type=int, default=DEFAULT_I2I_TOP_N,
help=f'Top N similar items to output (default: {DEFAULT_I2I_TOP_N})')
parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
help=f'Number of days to look back for user behavior (default: {DEFAULT_LOOKBACK_DAYS})')
|
9832fef6
tangwang
offline tasks
|
222
223
|
parser.add_argument('--time_decay', action='store_true', default=False,
help='Use time decay for behavior weights (default: False for B2B low-frequency scenarios)')
|
5ab1c29c
tangwang
first commit
|
224
225
|
parser.add_argument('--decay_factor', type=float, default=0.95,
help='Time decay factor')
|
12118125
tangwang
offline tasks: me...
|
226
227
228
229
|
parser.add_argument('--use_daily_session', action='store_true', default=True,
help='Use uid+date as additional session dimension (default: True)')
parser.add_argument('--no_daily_session', action='store_false', dest='use_daily_session',
help='Disable uid+date session dimension')
|
5ab1c29c
tangwang
first commit
|
230
231
|
parser.add_argument('--output', type=str, default=None,
help='Output file path')
|
1721766b
tangwang
offline tasks
|
232
233
|
parser.add_argument('--debug', action='store_true',
help='Enable debug mode with detailed logging and readable output')
|
5ab1c29c
tangwang
first commit
|
234
235
236
|
args = parser.parse_args()
|
1721766b
tangwang
offline tasks
|
237
238
239
240
241
242
243
244
245
246
|
# 设置日志
logger = setup_debug_logger('i2i_swing', debug=args.debug)
# 记录参数
log_algorithm_params(logger, {
'alpha': args.alpha,
'top_n': args.top_n,
'lookback_days': args.lookback_days,
'time_decay': args.time_decay,
'decay_factor': args.decay_factor,
|
12118125
tangwang
offline tasks: me...
|
247
|
'use_daily_session': args.use_daily_session,
|
1721766b
tangwang
offline tasks
|
248
249
250
|
'debug': args.debug
})
|
5ab1c29c
tangwang
first commit
|
251
|
# 创建数据库连接
|
1721766b
tangwang
offline tasks
|
252
|
logger.info("连接数据库...")
|
5ab1c29c
tangwang
first commit
|
253
254
255
256
257
258
259
260
261
262
|
engine = create_db_connection(
DB_CONFIG['host'],
DB_CONFIG['port'],
DB_CONFIG['database'],
DB_CONFIG['username'],
DB_CONFIG['password']
)
# 获取时间范围
start_date, end_date = get_time_range(args.lookback_days)
|
1721766b
tangwang
offline tasks
|
263
|
logger.info(f"获取数据: {start_date} 到 {end_date}")
|
5ab1c29c
tangwang
first commit
|
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
# SQL查询 - 获取用户行为数据
sql_query = f"""
SELECT
se.anonymous_id AS user_id,
se.item_id,
se.event AS event_type,
se.create_time,
pgs.name AS item_name
FROM
sensors_events se
LEFT JOIN prd_goods_sku pgs ON se.item_id = pgs.id
WHERE
se.event IN ('contactFactory', 'addToPool', 'addToCart', 'purchase')
AND se.create_time >= '{start_date}'
AND se.create_time <= '{end_date}'
AND se.item_id IS NOT NULL
AND se.anonymous_id IS NOT NULL
ORDER BY
se.create_time
"""
|
1721766b
tangwang
offline tasks
|
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
try:
logger.info("执行SQL查询...")
df = pd.read_sql(sql_query, engine)
logger.info(f"获取到 {len(df)} 条记录")
# Debug: 显示数据详情
if args.debug:
log_dataframe_info(logger, df, "用户行为数据", sample_size=10)
except Exception as e:
logger.error(f"获取数据失败: {e}")
return
if len(df) == 0:
logger.warning("没有找到数据")
return
|
5ab1c29c
tangwang
first commit
|
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
# 转换create_time为datetime
df['create_time'] = pd.to_datetime(df['create_time'])
# 定义行为权重
behavior_weights = {
'contactFactory': 5.0,
'addToPool': 2.0,
'addToCart': 3.0,
'purchase': 10.0
}
# 添加权重列
df['weight'] = df['event_type'].map(behavior_weights).fillna(1.0)
|
1721766b
tangwang
offline tasks
|
316
317
318
319
320
321
|
if logger and args.debug:
logger.debug(f"行为类型分布:")
event_counts = df['event_type'].value_counts()
for event, count in event_counts.items():
logger.debug(f" {event}: {count} ({count/len(df)*100:.2f}%)")
|
5ab1c29c
tangwang
first commit
|
322
|
# 运行Swing算法
|
1721766b
tangwang
offline tasks
|
323
|
logger.info("运行Swing算法...")
|
5ab1c29c
tangwang
first commit
|
324
325
326
327
|
result = swing_algorithm(
df,
alpha=args.alpha,
time_decay=args.time_decay,
|
1721766b
tangwang
offline tasks
|
328
|
decay_factor=args.decay_factor,
|
12118125
tangwang
offline tasks: me...
|
329
|
use_daily_session=args.use_daily_session,
|
1721766b
tangwang
offline tasks
|
330
331
|
logger=logger,
debug=args.debug
|
5ab1c29c
tangwang
first commit
|
332
333
|
)
|
a1f370ee
tangwang
offline tasks
|
334
335
|
# 创建item_id到name的映射(key转为字符串,与name_mappings一致)
item_name_map = dict(zip(df['item_id'].unique().astype(str), df.groupby('item_id')['item_name'].first()))
|
5ab1c29c
tangwang
first commit
|
336
337
338
339
|
# 输出结果
output_file = args.output or os.path.join(OUTPUT_DIR, f'i2i_swing_{datetime.now().strftime("%Y%m%d")}.txt')
|
1721766b
tangwang
offline tasks
|
340
341
|
logger.info(f"保存结果到: {output_file}")
output_count = 0
|
5ab1c29c
tangwang
first commit
|
342
343
|
with open(output_file, 'w', encoding='utf-8') as f:
for item_id, sims in result.items():
|
a1f370ee
tangwang
offline tasks
|
344
345
|
# item_name_map的key是字符串,需要转换
item_name = item_name_map.get(str(item_id), 'Unknown')
|
5ab1c29c
tangwang
first commit
|
346
347
348
349
350
351
352
353
354
355
|
# 只取前N个最相似的商品
top_sims = sims[:args.top_n]
if not top_sims:
continue
# 格式:item_id \t item_name \t similar_item_id1:score1,similar_item_id2:score2,...
sim_str = ','.join([f'{sim_id}:{score:.4f}' for sim_id, score in top_sims])
f.write(f'{item_id}\t{item_name}\t{sim_str}\n')
|
1721766b
tangwang
offline tasks
|
356
357
358
|
output_count += 1
logger.info(f"输出了 {output_count} 个商品的推荐")
|
5ab1c29c
tangwang
first commit
|
359
|
|
1721766b
tangwang
offline tasks
|
360
361
362
363
|
# Debug模式:生成明文文件
if args.debug:
logger.info("Debug模式:生成明文索引文件...")
try:
|
12118125
tangwang
offline tasks: me...
|
364
365
366
|
# 从本地文件加载名称映射
logger.debug("加载ID到名称的映射...")
name_mappings = load_name_mappings_from_file(debug=True)
|
1721766b
tangwang
offline tasks
|
367
|
|
a1f370ee
tangwang
offline tasks
|
368
369
|
# 准备索引数据(合并已有的item_name_map)
# item_name_map的key已经是str类型,可以直接更新
|
1721766b
tangwang
offline tasks
|
370
371
|
name_mappings['item'].update(item_name_map)
|
8cc6477b
tangwang
offline tasks
|
372
|
if args.debug:
|
a1f370ee
tangwang
offline tasks
|
373
374
|
logger.debug(f"name_mappings['item']共有 {len(name_mappings['item'])} 个商品名称")
|
1721766b
tangwang
offline tasks
|
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
index_data = {}
for item_id, sims in result.items():
top_sims = sims[:args.top_n]
if top_sims:
index_data[f"i2i:swing:{item_id}"] = top_sims
# 保存明文文件
readable_file = save_readable_index(
output_file,
index_data,
name_mappings,
description=f"Swing算法 i2i相似度推荐 (alpha={args.alpha}, lookback_days={args.lookback_days})"
)
logger.info(f"明文索引文件: {readable_file}")
except Exception as e:
logger.error(f"生成明文文件失败: {e}", exc_info=True)
logger.info("完成!")
|
5ab1c29c
tangwang
first commit
|
393
394
395
396
|
if __name__ == '__main__':
main()
|