Blame view

offline_tasks/scripts/generate_session.py 8.29 KB
5b61955e   tangwang   offline tasks: me...
1
2
3
4
5
  """
  生成用户行为Session文件
  从数据库读取用户行为,生成适用于C++ Swing算法的session文件
  输出格式: uid \t {"item_id":score,"item_id":score,...}
  """
5b61955e   tangwang   offline tasks: me...
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  import pandas as pd
  import json
  from collections import defaultdict
  import argparse
  from datetime import datetime, timedelta
  from db_service import create_db_connection
  from offline_tasks.config.offline_config import (
      DB_CONFIG, OUTPUT_DIR, get_time_range,
      DEFAULT_LOOKBACK_DAYS
  )
  from offline_tasks.scripts.debug_utils import setup_debug_logger, log_dataframe_info
  
  
  def aggregate_user_sessions(df, behavior_weights, logger=None, debug=False):
      """
      聚合用户行为session
      
      Args:
          df: DataFrame with columns: user_id, item_id, event_type, create_time
          behavior_weights: 行为权重字典
          logger: 日志记录器
          debug: 是否开启debug模式
      
      Returns:
          Dict[user_id, Dict[item_id, score]]
      """
      if logger:
          logger.info("开始聚合用户行为session...")
      
      # 添加权重列
      df['weight'] = df['event_type'].map(behavior_weights).fillna(1.0)
      
      # 按用户聚合
      user_sessions = defaultdict(lambda: defaultdict(float))
      
      for _, row in df.iterrows():
          user_id = row['user_id']
          item_id = row['item_id']
          weight = row['weight']
          
          # 累加权重(同一用户对同一商品的多次行为)
          user_sessions[user_id][item_id] += weight
      
      if logger:
          logger.info(f"聚合完成,共 {len(user_sessions)} 个用户")
          
          # 统计
          total_interactions = sum(len(items) for items in user_sessions.values())
          avg_interactions = total_interactions / len(user_sessions) if user_sessions else 0
          logger.info(f"平均每个用户交互 {avg_interactions:.2f} 个商品")
          
          if debug:
              # 展示示例
              sample_users = list(user_sessions.items())[:3]
              for user_id, items in sample_users:
                  logger.debug(f"用户 {user_id} 的session: {dict(list(items.items())[:5])}...")
      
      return user_sessions
  
  
  def save_session_file(user_sessions, output_file, logger=None, debug=False):
      """
      保存session文件
      
      格式: uid \t {"item_id":score,"item_id":score,...}
      其中itemsscore降序排列
      
      Args:
          user_sessions: Dict[user_id, Dict[item_id, score]]
          output_file: 输出文件路径
          logger: 日志记录器
          debug: 是否开启debug模式
      """
      if logger:
          logger.info(f"保存session文件到: {output_file}")
      
      with open(output_file, 'w', encoding='utf-8') as f:
          for user_id, items in user_sessions.items():
              # 按分数降序排序
              sorted_items = sorted(items.items(), key=lambda x: -x[1])
              
              # 构建JSON字符串(注意item_id需要加引号)
              items_dict = {str(item_id): round(score, 4) for item_id, score in sorted_items}
              items_json = json.dumps(items_dict, ensure_ascii=False, separators=(',', ':'))
              
              # 写入文件
              f.write(f"{user_id}\t{items_json}\n")
      
      if logger:
          logger.info(f"保存完成,共 {len(user_sessions)} 个用户session")
  
  
  def save_session_file_for_cpp(user_sessions, output_file, logger=None, debug=False):
      """
      保存session文件(C++版本格式,不包含uid
      
      格式: {"item_id":score,"item_id":score,...}
      每行一个用户的session,按score降序排列
      
      Args:
          user_sessions: Dict[user_id, Dict[item_id, score]]
          output_file: 输出文件路径
          logger: 日志记录器
          debug: 是否开启debug模式
      """
      if logger:
          logger.info(f"保存session文件(C++格式)到: {output_file}")
      
      with open(output_file, 'w', encoding='utf-8') as f:
          for user_id, items in user_sessions.items():
              # 按分数降序排序
              sorted_items = sorted(items.items(), key=lambda x: -x[1])
              
              # 构建JSON字符串(注意item_id需要加引号)
              items_dict = {f'"{item_id}"': round(score, 4) for item_id, score in sorted_items}
              # 手动构建JSON格式(保证引号格式)
              items_str = ','.join([f'"{k.strip(chr(34))}":{v}' for k, v in items_dict.items()])
              items_json = '{' + items_str + '}'
              
              # 写入文件
              f.write(f"{items_json}\n")
      
      if logger:
          logger.info(f"保存完成(C++格式),共 {len(user_sessions)} 个用户session")
  
  
  def main():
      parser = argparse.ArgumentParser(description='Generate user behavior session file')
      parser.add_argument('--lookback_days', type=int, default=DEFAULT_LOOKBACK_DAYS,
                         help=f'Number of days to look back for user behavior (default: {DEFAULT_LOOKBACK_DAYS})')
      parser.add_argument('--output', type=str, default=None,
                         help='Output file path')
      parser.add_argument('--debug', action='store_true',
                         help='Enable debug mode with detailed logging')
      parser.add_argument('--format', type=str, default='both', choices=['standard', 'cpp', 'both'],
                         help='Output format: standard (uid+json), cpp (json only), both (default: both)')
      
      args = parser.parse_args()
      
      # 设置日志
      logger = setup_debug_logger('generate_session', debug=args.debug)
      
      # 记录参数
      logger.info(f"参数配置:")
      logger.info(f"  lookback_days: {args.lookback_days}")
      logger.info(f"  debug: {args.debug}")
      logger.info(f"  format: {args.format}")
      
      # 创建数据库连接
      logger.info("连接数据库...")
      engine = create_db_connection(
          DB_CONFIG['host'],
          DB_CONFIG['port'],
          DB_CONFIG['database'],
          DB_CONFIG['username'],
          DB_CONFIG['password']
      )
      
      # 获取时间范围
      start_date, end_date = get_time_range(args.lookback_days)
      logger.info(f"获取数据: {start_date} 到 {end_date}")
      
      # SQL查询 - 获取用户行为数据
      sql_query = f"""
      SELECT 
          se.anonymous_id AS user_id,
          se.item_id,
          se.event AS event_type,
          se.create_time
      FROM 
          sensors_events se
      WHERE 
          se.event IN ('contactFactory', 'addToPool', 'addToCart', 'purchase')
          AND se.create_time >= '{start_date}'
          AND se.create_time <= '{end_date}'
          AND se.item_id IS NOT NULL
          AND se.anonymous_id IS NOT NULL
      ORDER BY 
          se.create_time
      """
      
      try:
          logger.info("执行SQL查询...")
          df = pd.read_sql(sql_query, engine)
          logger.info(f"获取到 {len(df)} 条记录")
          
          # Debug: 显示数据详情
          if args.debug:
              log_dataframe_info(logger, df, "用户行为数据", sample_size=10)
      except Exception as e:
          logger.error(f"获取数据失败: {e}")
          return
      
      if len(df) == 0:
          logger.warning("没有找到数据")
          return
      
      # 转换create_time为datetime
      df['create_time'] = pd.to_datetime(df['create_time'])
      
      # 定义行为权重
      behavior_weights = {
          'contactFactory': 5.0,
          'addToPool': 2.0,
          'addToCart': 3.0,
          'purchase': 10.0
      }
      
      if logger and args.debug:
          logger.debug(f"行为类型分布:")
          event_counts = df['event_type'].value_counts()
          for event, count in event_counts.items():
              logger.debug(f"  {event}: {count} ({count/len(df)*100:.2f}%)")
      
      # 聚合用户session
      user_sessions = aggregate_user_sessions(
          df,
          behavior_weights,
          logger=logger,
          debug=args.debug
      )
      
      # 生成输出文件名
      date_str = datetime.now().strftime("%Y%m%d")
      
      if args.output:
          output_base = args.output
      else:
          output_base = os.path.join(OUTPUT_DIR, f'session.txt.{date_str}')
      
      # 保存文件
      if args.format in ['standard', 'both']:
          output_file = output_base
          save_session_file(user_sessions, output_file, logger=logger, debug=args.debug)
      
      if args.format in ['cpp', 'both']:
          output_file_cpp = output_base + '.cpp'
          save_session_file_for_cpp(user_sessions, output_file_cpp, logger=logger, debug=args.debug)
      
      logger.info("完成!")
  
  
  if __name__ == '__main__':
      main()