es_query_builder.py 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
"""
Elasticsearch query builder.

Converts parsed queries and search parameters into ES DSL queries.

Simplified architecture:
- filters and (text_recall or embedding_recall)
- function_score wrapper for boosting fields
"""

from typing import Dict, Any, List, Optional, Union, Tuple
import numpy as np
from .boolean_parser import QueryNode
from config import FunctionScoreConfig


class ESQueryBuilder:
    """Builds Elasticsearch DSL queries."""

    def __init__(
        self,
        index_name: str,
        match_fields: List[str],
        text_embedding_field: Optional[str] = None,
        image_embedding_field: Optional[str] = None,
        source_fields: Optional[List[str]] = None,
        function_score_config: Optional[FunctionScoreConfig] = None,
        enable_multilang_search: bool = True,
        default_language: str = "zh"
    ):
        """
        Initialize query builder.

        Args:
            index_name: ES index name
            match_fields: Fields to search for text matching
            text_embedding_field: Field name for text embeddings
            image_embedding_field: Field name for image embeddings
            source_fields: Fields to return in search results (_source includes)
            function_score_config: Function score configuration
            enable_multilang_search: Enable multi-language search using translations
            default_language: Default language to use when detection fails or returns "unknown"
        """
        self.index_name = index_name
        self.match_fields = match_fields
        self.text_embedding_field = text_embedding_field
        self.image_embedding_field = image_embedding_field
        self.source_fields = source_fields
        self.function_score_config = function_score_config
        self.enable_multilang_search = enable_multilang_search
        self.default_language = default_language

    def _split_filters_for_faceting(
        self,
        filters: Optional[Dict[str, Any]],
        facet_configs: Optional[List[Any]]
    ) -> tuple:
        """
        Split filters into conjunctive (query) and disjunctive (post_filter) based on facet configs.
        
        Disjunctive filters (multi-select facets):
        - Applied via post_filter (affects results but not aggregations)
        - Allows showing other options in the same facet even when filtered
        
        Conjunctive filters (standard facets):
        - Applied in query.bool.filter (affects both results and aggregations)
        - Standard drill-down behavior
        
        Args:
            filters: All filters from request
            facet_configs: Facet configurations with disjunctive flags
            
        Returns:
            (conjunctive_filters, disjunctive_filters)
        """
        if not filters or not facet_configs:
            return filters or {}, {}
        
        # Get fields that support multi-select
        multi_select_fields = set()
        for fc in facet_configs:
            if getattr(fc, 'disjunctive', False):
                # Handle specifications.xxx format
                if fc.field.startswith('specifications.'):
                    multi_select_fields.add('specifications')
                else:
                    multi_select_fields.add(fc.field)
        
        # Split filters
        conjunctive = {}
        disjunctive = {}
        
        for field, value in filters.items():
            if field in multi_select_fields:
                disjunctive[field] = value
            else:
                conjunctive[field] = value
        
        return conjunctive, disjunctive

    def build_query(
        self,
        query_text: str,
        query_vector: Optional[np.ndarray] = None,
        query_node: Optional[QueryNode] = None,
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, Any]] = None,
        facet_configs: Optional[List[Any]] = None,
        size: int = 10,
        from_: int = 0,
        enable_knn: bool = True,
        knn_k: int = 50,
        knn_num_candidates: int = 200,
        min_score: Optional[float] = None,
        parsed_query: Optional[Any] = None
    ) -> Dict[str, Any]:
        """
        Build complete ES query with post_filter support for multi-select faceting.

        结构:filters and (text_recall or embedding_recall) + post_filter
        - conjunctive_filters: 应用在 query.bool.filter(影响结果和聚合)
        - disjunctive_filters: 应用在 post_filter(只影响结果,不影响聚合)
        - text_recall: 文本相关性召回(中英文字段都用)
        - embedding_recall: 向量召回(KNN)
        - function_score: 包装召回部分,支持提权字段

        Args:
            query_text: Query text for BM25 matching
            query_vector: Query embedding for KNN search
            query_node: Parsed boolean expression tree
            filters: Exact match filters
            range_filters: Range filters for numeric fields (always applied in query)
            facet_configs: Facet configurations (used to identify multi-select facets)
            size: Number of results
            from_: Offset for pagination
            enable_knn: Whether to use KNN search
            knn_k: K value for KNN
            knn_num_candidates: Number of candidates for KNN
            min_score: Minimum score threshold

        Returns:
            ES query DSL dictionary
        """
        es_query = {
            "size": size,
            "from": from_
        }

        # Add _source filtering if source_fields are configured
        if self.source_fields:
            es_query["_source"] = {
                "includes": self.source_fields
            }

        # 1. Build recall queries (text or embedding)
        recall_clauses = []
        
        # Text recall (always include if query_text exists)
        if query_text:
            if query_node and query_node.operator != 'TERM':
                # Complex boolean query
                text_query = self._build_boolean_query(query_node)
            else:
                # Simple text query - use advanced should-based multi-query strategy
                text_query = self._build_advanced_text_query(query_text, parsed_query)
            recall_clauses.append(text_query)
        
        # Embedding recall (KNN - separate from query, handled below)
        has_embedding = enable_knn and query_vector is not None and self.text_embedding_field
        
        # 2. Split filters for multi-select faceting
        conjunctive_filters, disjunctive_filters = self._split_filters_for_faceting(
            filters, facet_configs
        )
        
        # Build filter clauses for query (conjunctive filters + range filters)
        filter_clauses = self._build_filters(conjunctive_filters, range_filters)
        
        # 3. Build main query structure: filters and recall
        if recall_clauses:
            # Combine text recalls with OR logic (if multiple)
            if len(recall_clauses) == 1:
                recall_query = recall_clauses[0]
            else:
                recall_query = {
                    "bool": {
                        "should": recall_clauses,
                        "minimum_should_match": 1
                    }
                }
            
            # Wrap recall with function_score for boosting
            recall_query = self._wrap_with_function_score(recall_query)
            
            # Combine filters and recall
            if filter_clauses:
                es_query["query"] = {
                    "bool": {
                        "must": [recall_query],
                        "filter": filter_clauses
                    }
                }
            else:
                es_query["query"] = recall_query
        else:
            # No recall queries, only filters (match_all filtered)
            if filter_clauses:
                es_query["query"] = {
                    "bool": {
                        "must": [{"match_all": {}}],
                        "filter": filter_clauses
                    }
                }
            else:
                es_query["query"] = {"match_all": {}}

        # 4. Add KNN search if enabled (separate from query, ES will combine)
        if has_embedding:
            knn_clause = {
                "field": self.text_embedding_field,
                "query_vector": query_vector.tolist(),
                "k": knn_k,
                "num_candidates": knn_num_candidates,
                "boost": 0.2  # Lower boost for embedding recall
            }
            es_query["knn"] = knn_clause

        # 5. Add post_filter for disjunctive (multi-select) filters
        if disjunctive_filters:
            post_filter_clauses = self._build_filters(disjunctive_filters, None)
            if post_filter_clauses:
                if len(post_filter_clauses) == 1:
                    es_query["post_filter"] = post_filter_clauses[0]
                else:
                    es_query["post_filter"] = {
                        "bool": {"filter": post_filter_clauses}
                    }

        # 6. Add minimum score filter
        if min_score is not None:
            es_query["min_score"] = min_score

        return es_query
    
    def _wrap_with_function_score(self, query: Dict[str, Any]) -> Dict[str, Any]:
        """
        Wrap query with function_score for boosting fields.
        
        Args:
            query: Base query to wrap
            
        Returns:
            Function score query or original query if no functions configured
        """
        functions = self._build_score_functions()
        
        # If no functions configured, return original query
        if not functions:
            return query
        
        # Build function_score query
        score_mode = self.function_score_config.score_mode if self.function_score_config else "sum"
        boost_mode = self.function_score_config.boost_mode if self.function_score_config else "multiply"
        
        function_score_query = {
            "function_score": {
                "query": query,
                "functions": functions,
                "score_mode": score_mode,
                "boost_mode": boost_mode
            }
        }
        
        return function_score_query
    
    def _build_score_functions(self) -> List[Dict[str, Any]]:
        """
        Build function_score functions from config.
        
        Returns:
            List of function score functions
        """
        functions = []
        if not self.function_score_config:
            return functions
        
        config_functions = self.function_score_config.functions or []
        
        for func_config in config_functions:
            func_type = func_config.get("type")
            
            if func_type == "filter_weight":
                # Filter + Weight
                functions.append({
                    "filter": func_config["filter"],
                    "weight": func_config.get("weight", 1.0)
                })
            
            elif func_type == "field_value_factor":
                # Field Value Factor
                functions.append({
                    "field_value_factor": {
                        "field": func_config["field"],
                        "factor": func_config.get("factor", 1.0),
                        "modifier": func_config.get("modifier", "none"),
                        "missing": func_config.get("missing", 1.0)
                    }
                })
            
            elif func_type == "decay":
                # Decay Function (gauss/exp/linear)
                decay_func = func_config.get("function", "gauss")
                field = func_config["field"]
                
                decay_params = {
                    "origin": func_config.get("origin", "now"),
                    "scale": func_config["scale"]
                }
                
                if "offset" in func_config:
                    decay_params["offset"] = func_config["offset"]
                if "decay" in func_config:
                    decay_params["decay"] = func_config["decay"]
                
                functions.append({
                    decay_func: {
                        field: decay_params
                    }
                })
        
        return functions

    def _build_text_query(self, query_text: str) -> Dict[str, Any]:
        """
        Build simple text matching query (BM25).
        Legacy method - kept for backward compatibility.

        Args:
            query_text: Query text

        Returns:
            ES query clause
        """
        return {
            "multi_match": {
                "query": query_text,
                "fields": self.match_fields,
                "minimum_should_match": "67%",
                "tie_breaker": 0.9,
                "boost": 1.0,
                "_name": "base_query"
            }
        }
    
    def _get_match_fields(self, language: str) -> Tuple[List[str], List[str]]:
        """
        Get match fields for a specific language.
        
        Args:
            language: Language code ('zh' or 'en')
            
        Returns:
            (all_fields, core_fields) - core_fields are for phrase/keyword queries
        """
        if language == 'zh':
            all_fields = [
                "title_zh^3.0",
                "brief_zh^1.5",
                "description_zh",
                "vendor_zh^1.5",
                "tags",
                "category_path_zh^1.5",
                "category_name_zh^1.5",
                "option1_values^0.5"
            ]
            core_fields = [
                "title_zh^3.0",
                "brief_zh^1.5",
                "vendor_zh^1.5",
                "category_name_zh^1.5"
            ]
        else:  # en
            all_fields = [
                "title_en^3.0",
                "brief_en^1.5",
                "description_en",
                "vendor_en^1.5",
                "tags",
                "category_path_en^1.5",
                "category_name_en^1.5",
                "option1_values^0.5"
            ]
            core_fields = [
                "title_en^3.0",
                "brief_en^1.5",
                "vendor_en^1.5",
                "category_name_en^1.5"
            ]
        return all_fields, core_fields
    
    def _get_embedding_field(self, language: str) -> str:
        """Get embedding field name for a language."""
        # Currently using unified embedding field
        return self.text_embedding_field or "title_embedding"
    
    def _build_advanced_text_query(self, query_text: str, parsed_query: Optional[Any] = None) -> Dict[str, Any]:
        """
        Build advanced text query using should clauses with multiple query strategies.
        
        Reference implementation:
        - base_query: main query with AND operator and 75% minimum_should_match
        - translation queries: lower boost (0.4) for other languages
        - phrase query: for short queries (2+ tokens)
        - keywords query: extracted nouns from query
        - KNN query: added separately in build_query
        
        Args:
            query_text: Query text
            parsed_query: ParsedQuery object with analysis results
            
        Returns:
            ES bool query with should clauses
        """
        should_clauses = []
        
        # Get query analysis from parsed_query
        translations = {}
        language = self.default_language
        keywords = ""
        token_count = 0
        is_short_query = False
        is_long_query = False
        
        if parsed_query:
            translations = parsed_query.translations or {}
            # Use default language if detected_language is None or "unknown"
            detected_lang = parsed_query.detected_language
            if not detected_lang or detected_lang == "unknown":
                language = self.default_language
            else:
                language = detected_lang
            keywords = getattr(parsed_query, 'keywords', '') or ""
            token_count = getattr(parsed_query, 'token_count', 0) or 0
            is_short_query = getattr(parsed_query, 'is_short_query', False)
            is_long_query = getattr(parsed_query, 'is_long_query', False)
        
        # Get match fields for the detected language
        match_fields, core_fields = self._get_match_fields(language)
        
        # Tie breaker values
        tie_breaker_base_query = 0.9
        tie_breaker_long_query = 0.9
        tie_breaker_keywords = 0.9
        
        # 1. Base query - main query with AND operator
        should_clauses.append({
            "multi_match": {
                "_name": "base_query",
                "fields": match_fields,
                "minimum_should_match": "75%",
                "operator": "AND",
                "query": query_text,
                "tie_breaker": tie_breaker_base_query
            }
        })
        
        # 2. Translation queries - lower boost (0.4) for other languages
        if self.enable_multilang_search:
            if language != 'zh' and translations.get('zh'):
                zh_fields, _ = self._get_match_fields('zh')
                should_clauses.append({
                    "multi_match": {
                        "query": translations['zh'],
                        "fields": zh_fields,
                        "operator": "AND",
                        "minimum_should_match": "75%",
                        "tie_breaker": tie_breaker_base_query,
                        "boost": 0.4,
                        "_name": "base_query_trans_zh"
                    }
                })
            
            if language != 'en' and translations.get('en'):
                en_fields, _ = self._get_match_fields('en')
                should_clauses.append({
                    "multi_match": {
                        "query": translations['en'],
                        "fields": en_fields,
                        "operator": "AND",
                        "minimum_should_match": "75%",
                        "tie_breaker": tie_breaker_base_query,
                        "boost": 0.4,
                        "_name": "base_query_trans_en"
                    }
                })
        
        # 3. Long query - add a query with lower minimum_should_match
        # Currently disabled (False condition in reference)
        if False and is_long_query:
            boost = 0.5 * pow(min(1.0, token_count / 10.0), 0.9)
            minimum_should_match = "70%"
            should_clauses.append({
                "multi_match": {
                    "query": query_text,
                    "fields": match_fields,
                    "minimum_should_match": minimum_should_match,
                    "boost": boost,
                    "tie_breaker": tie_breaker_long_query,
                    "_name": "long_query"
                }
            })
        
        # 4. Short query - add phrase query
        ENABLE_PHRASE_QUERY = True
        if ENABLE_PHRASE_QUERY and token_count >= 2 and is_short_query:
            query_length = len(query_text)
            slop = 0 if query_length < 3 else 1 if query_length < 5 else 2
            should_clauses.append({
                "multi_match": {
                    "query": query_text,
                    "fields": core_fields,
                    "type": "phrase",
                    "slop": slop,
                    "boost": 1.0,
                    "_name": "phrase_query"
                }
            })
        
        # 5. Keywords query - extracted nouns from query
        elif keywords and len(keywords.split()) <= 2 and 2 * len(keywords.replace(' ', '')) <= len(query_text):
            should_clauses.append({
                "multi_match": {
                    "query": keywords,
                    "fields": core_fields,
                    "operator": "AND",
                    "tie_breaker": tie_breaker_keywords,
                    "boost": 0.1,
                    "_name": "keywords_query"
                }
            })
        
        # Return bool query with should clauses
        if len(should_clauses) == 1:
            return should_clauses[0]
        
        return {
            "bool": {
                "should": should_clauses,
                "minimum_should_match": 1
            }
        }

    def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
        """
        Build query from boolean expression tree.

        Args:
            node: Query tree node

        Returns:
            ES query clause
        """
        if node.operator == 'TERM':
            # Leaf node - simple text query
            return self._build_text_query(node.value)

        elif node.operator == 'AND':
            # All terms must match
            return {
                "bool": {
                    "must": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ]
                }
            }

        elif node.operator == 'OR':
            # Any term must match
            return {
                "bool": {
                    "should": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ],
                    "minimum_should_match": 1
                }
            }

        elif node.operator == 'ANDNOT':
            # First term must match, second must not
            if len(node.terms) >= 2:
                return {
                    "bool": {
                        "must": [self._build_boolean_query(node.terms[0])],
                        "must_not": [self._build_boolean_query(node.terms[1])]
                    }
                }
            else:
                return self._build_boolean_query(node.terms[0])

        elif node.operator == 'RANK':
            # Like OR but for ranking (all terms contribute to score)
            return {
                "bool": {
                    "should": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ]
                }
            }

        else:
            # Unknown operator
            return {"match_all": {}}

    def _build_filters(
        self, 
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, 'RangeFilter']] = None
    ) -> List[Dict[str, Any]]:
        """
        构建过滤子句。
        
        Args:
            filters: 精确匹配过滤器字典
            range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
        
        Returns:
            ES filter 子句列表
        """
        filter_clauses = []
        
        # 1. 处理精确匹配过滤
        if filters:
            for field, value in filters.items():
                # 特殊处理:specifications 嵌套过滤
                if field == "specifications":
                    if isinstance(value, dict):
                        # 单个规格过滤:{"name": "color", "value": "green"}
                        name = value.get("name")
                        spec_value = value.get("value")
                        if name and spec_value:
                            filter_clauses.append({
                                "nested": {
                                    "path": "specifications",
                                    "query": {
                                        "bool": {
                                            "must": [
                                                {"term": {"specifications.name": name}},
                                                {"term": {"specifications.value": spec_value}}
                                            ]
                                        }
                                    }
                                }
                            })
                    elif isinstance(value, list):
                        # 多个规格过滤:按 name 分组,相同维度 OR,不同维度 AND
                        # 例如:[{"name": "size", "value": "3"}, {"name": "size", "value": "4"}, {"name": "color", "value": "green"}]
                        # 应该生成:(size=3 OR size=4) AND color=green
                        from collections import defaultdict
                        specs_by_name = defaultdict(list)
                        for spec in value:
                            if isinstance(spec, dict):
                                name = spec.get("name")
                                spec_value = spec.get("value")
                                if name and spec_value:
                                    specs_by_name[name].append(spec_value)
                        
                        # 为每个 name 维度生成一个过滤子句
                        for name, values in specs_by_name.items():
                            if len(values) == 1:
                                # 单个值,直接生成 term 查询
                                filter_clauses.append({
                                    "nested": {
                                        "path": "specifications",
                                        "query": {
                                            "bool": {
                                                "must": [
                                                    {"term": {"specifications.name": name}},
                                                    {"term": {"specifications.value": values[0]}}
                                                ]
                                            }
                                        }
                                    }
                                })
                            else:
                                # 多个值,使用 should (OR) 连接
                                should_clauses = []
                                for spec_value in values:
                                    should_clauses.append({
                                        "bool": {
                                            "must": [
                                                {"term": {"specifications.name": name}},
                                                {"term": {"specifications.value": spec_value}}
                                            ]
                                        }
                                    })
                                filter_clauses.append({
                                    "nested": {
                                        "path": "specifications",
                                        "query": {
                                            "bool": {
                                                "should": should_clauses,
                                                "minimum_should_match": 1
                                            }
                                        }
                                    }
                                })
                    continue
                
                # 普通字段过滤
                if isinstance(value, list):
                    # 多值匹配(OR)
                    filter_clauses.append({
                        "terms": {field: value}
                    })
                else:
                    # 单值精确匹配
                    filter_clauses.append({
                        "term": {field: value}
                    })
        
        # 2. 处理范围过滤(支持 RangeFilter Pydantic 模型或字典)
        if range_filters:
            for field, range_filter in range_filters.items():
                # 支持 Pydantic 模型或字典格式
                if hasattr(range_filter, 'model_dump'):
                    # Pydantic 模型
                    range_dict = range_filter.model_dump(exclude_none=True)
                elif isinstance(range_filter, dict):
                    # 已经是字典格式
                    range_dict = {k: v for k, v in range_filter.items() if v is not None}
                else:
                    # 其他格式,跳过
                    continue
                
                if range_dict:
                    filter_clauses.append({
                        "range": {field: range_dict}
                    })
        
        return filter_clauses

    def add_spu_collapse(
        self,
        es_query: Dict[str, Any],
        spu_field: str,
        inner_hits_size: int = 3
    ) -> Dict[str, Any]:
        """
        Add SPU aggregation/collapse to query.

        Args:
            es_query: Existing ES query
            spu_field: Field containing SPU ID
            inner_hits_size: Number of SKUs to return per SPU

        Returns:
            Modified ES query
        """
        # Add collapse
        es_query["collapse"] = {
            "field": spu_field,
            "inner_hits": {
                "_source": False,
                "name": "top_docs",
                "size": inner_hits_size
            }
        }

        # Add cardinality aggregation to count unique SPUs
        if "aggs" not in es_query:
            es_query["aggs"] = {}

        es_query["aggs"]["unique_count"] = {
            "cardinality": {
                "field": spu_field
            }
        }

        return es_query

    def add_sorting(
        self,
        es_query: Dict[str, Any],
        sort_by: str,
        sort_order: str = "desc"
    ) -> Dict[str, Any]:
        """
        Add sorting to ES query.

        Args:
            es_query: Existing ES query
            sort_by: Field name for sorting (支持 'price' 自动映射)
            sort_order: Sort order: 'asc' or 'desc'

        Returns:
            Modified ES query
        """
        if not sort_by:
            return es_query

        if not sort_order:
            sort_order = "desc"

        # Auto-map 'price' to 'min_price' or 'max_price' based on sort_order
        if sort_by == "price":
            if sort_order.lower() == "asc":
                sort_by = "min_price"  # 价格从低到高
            else:
                sort_by = "max_price"  # 价格从高到低

        if "sort" not in es_query:
            es_query["sort"] = []

        # Add the specified sort
        sort_field = {
            sort_by: {
                "order": sort_order.lower()
            }
        }
        es_query["sort"].append(sort_field)

        return es_query

    def build_facets(
        self,
        facet_configs: Optional[List['FacetConfig']] = None
    ) -> Dict[str, Any]:
        """
        构建分面聚合。
        
        Args:
            facet_configs: 分面配置对象列表
            
            支持的字段类型:
                - 普通字段: 如 "category1_name"(terms 或 range 类型)
                - specifications: "specifications"(返回所有规格名称及其值)
                - specifications.{name}: 如 "specifications.color"(返回指定规格名称的值)
        
        Returns:
            ES aggregations 字典
        """
        if not facet_configs:
            return {}
        
        aggs = {}
        
        for config in facet_configs:
            field = config.field
            size = config.size
            facet_type = config.type
            
            # 处理 specifications(所有规格名称)
            if field == "specifications":
                aggs["specifications_facet"] = {
                    "nested": {"path": "specifications"},
                    "aggs": {
                        "by_name": {
                            "terms": {
                                "field": "specifications.name",
                                "size": 20,
                                "order": {"_count": "desc"}
                            },
                            "aggs": {
                                "value_counts": {
                                    "terms": {
                                        "field": "specifications.value",
                                        "size": size,
                                        "order": {"_count": "desc"}
                                    }
                                }
                            }
                        }
                    }
                }
                continue
            
            # 处理 specifications.{name}(指定规格名称)
            if field.startswith("specifications."):
                name = field[len("specifications."):]
                agg_name = f"specifications_{name}_facet"
                aggs[agg_name] = {
                    "nested": {"path": "specifications"},
                    "aggs": {
                        "filter_by_name": {
                            "filter": {"term": {"specifications.name": name}},
                            "aggs": {
                                "value_counts": {
                                    "terms": {
                                        "field": "specifications.value",
                                        "size": size,
                                        "order": {"_count": "desc"}
                                    }
                                }
                            }
                        }
                    }
                }
                continue
            
            # 处理普通字段
            agg_name = f"{field}_facet"
            
            if facet_type == 'terms':
                aggs[agg_name] = {
                    "terms": {
                        "field": field,
                        "size": size,
                        "order": {"_count": "desc"}
                    }
                }
            elif facet_type == 'range':
                if config.ranges:
                    aggs[agg_name] = {
                        "range": {
                            "field": field,
                            "ranges": config.ranges
                        }
                    }
        
        return aggs