models.py 8.96 KB
"""
Request and response models for the API.
"""

from pydantic import BaseModel, Field, field_validator
from typing import List, Dict, Any, Optional, Union, Literal


class RangeFilter(BaseModel):
    """范围过滤器(支持数值和日期时间字符串)"""
    gte: Optional[Union[float, str]] = Field(None, description="大于等于 (>=)。数值或ISO日期时间字符串")
    gt: Optional[Union[float, str]] = Field(None, description="大于 (>)。数值或ISO日期时间字符串")
    lte: Optional[Union[float, str]] = Field(None, description="小于等于 (<=)。数值或ISO日期时间字符串")
    lt: Optional[Union[float, str]] = Field(None, description="小于 (<)。数值或ISO日期时间字符串")
    
    def model_post_init(self, __context):
        """确保至少指定一个边界值"""
        if not any([self.gte, self.gt, self.lte, self.lt]):
            raise ValueError('至少需要指定一个范围边界(gte, gt, lte, lt)')
    
    class Config:
        json_schema_extra = {
            "examples": [
                {"gte": 50, "lte": 200},
                {"gt": 100},
                {"lt": 50},
                {"gte": "2023-01-01T00:00:00Z"}
            ]
        }


class FacetConfig(BaseModel):
    """分面配置(简化版)"""
    field: str = Field(..., description="分面字段名")
    size: int = Field(10, ge=1, le=100, description="返回的分面值数量")
    type: Literal["terms", "range"] = Field("terms", description="分面类型")
    ranges: Optional[List[Dict[str, Any]]] = Field(
        None,
        description="范围分面的范围定义(仅当 type='range' 时需要)"
    )
    
    class Config:
        json_schema_extra = {
            "examples": [
                {
                    "field": "categoryName_keyword",
                    "size": 15,
                    "type": "terms"
                },
                {
                    "field": "price",
                    "size": 4,
                    "type": "range",
                    "ranges": [
                        {"key": "0-50", "to": 50},
                        {"key": "50-100", "from": 50, "to": 100},
                        {"key": "100-200", "from": 100, "to": 200},
                        {"key": "200+", "from": 200}
                    ]
                }
            ]
        }


class SearchRequest(BaseModel):
    """搜索请求模型(重构版)"""
    
    # 基础搜索参数
    query: str = Field(..., description="搜索查询字符串,支持布尔表达式(AND, OR, RANK, ANDNOT)")
    size: int = Field(10, ge=1, le=100, description="返回结果数量")
    from_: int = Field(0, ge=0, alias="from", description="分页偏移量")
    
    # 过滤器 - 精确匹配和多值匹配
    filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = Field(
        None,
        description="精确匹配过滤器。单值表示精确匹配,数组表示 OR 匹配(匹配任意一个值)",
        json_schema_extra={
            "examples": [
                {
                    "categoryName_keyword": ["玩具", "益智玩具"],
                    "brandName_keyword": "乐高",
                    "in_stock": True
                }
            ]
        }
    )
    
    # 范围过滤器 - 数值范围
    range_filters: Optional[Dict[str, RangeFilter]] = Field(
        None,
        description="数值范围过滤器。支持 gte, gt, lte, lt 操作符",
        json_schema_extra={
            "examples": [
                {
                    "price": {"gte": 50, "lte": 200},
                    "days_since_last_update": {"lte": 30}
                }
            ]
        }
    )
    
    # 排序
    sort_by: Optional[str] = Field(None, description="排序字段名(如 'price', 'create_time')")
    sort_order: Optional[str] = Field("desc", description="排序方向: 'asc'(升序)或 'desc'(降序)")
    
    # 分面搜索 - 简化接口
    facets: Optional[List[Union[str, FacetConfig]]] = Field(
        None,
        description="分面配置。可以是字段名列表(使用默认配置)或详细的分面配置对象",
        json_schema_extra={
            "examples": [
                # 简单模式:只指定字段名,使用默认配置
                ["categoryName_keyword", "brandName_keyword"],
                # 高级模式:详细配置
                [
                    {"field": "categoryName_keyword", "size": 15},
                    {
                        "field": "price",
                        "type": "range",
                        "ranges": [
                            {"key": "0-50", "to": 50},
                            {"key": "50-100", "from": 50, "to": 100}
                        ]
                    }
                ]
            ]
        }
    )
    
    # 高级选项
    min_score: Optional[float] = Field(None, ge=0, description="最小相关性分数阈值")
    highlight: bool = Field(False, description="是否高亮搜索关键词(暂不实现)")
    debug: bool = Field(False, description="是否返回调试信息")
    
    # 个性化参数(预留)
    user_id: Optional[str] = Field(None, description="用户ID,用于个性化搜索和推荐")
    session_id: Optional[str] = Field(None, description="会话ID,用于搜索分析")


class ImageSearchRequest(BaseModel):
    """图片搜索请求模型"""
    image_url: str = Field(..., description="查询图片的 URL")
    size: int = Field(10, ge=1, le=100, description="返回结果数量")
    filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = None
    range_filters: Optional[Dict[str, RangeFilter]] = None


class SearchSuggestRequest(BaseModel):
    """搜索建议请求模型(框架,暂不实现)"""
    query: str = Field(..., min_length=1, description="搜索查询字符串")
    size: int = Field(5, ge=1, le=20, description="返回建议数量")
    types: List[Literal["query", "product", "category", "brand"]] = Field(
        ["query"],
        description="建议类型:query(查询建议), product(商品建议), category(类目建议), brand(品牌建议)"
    )


class FacetValue(BaseModel):
    """分面值"""
    value: Union[str, int, float] = Field(..., description="分面值")
    label: Optional[str] = Field(None, description="显示标签(如果与 value 不同)")
    count: int = Field(..., description="匹配的文档数量")
    selected: bool = Field(False, description="是否已选中(当前过滤器中)")


class FacetResult(BaseModel):
    """分面结果(标准化格式)"""
    field: str = Field(..., description="字段名")
    label: str = Field(..., description="分面显示名称")
    type: Literal["terms", "range"] = Field(..., description="分面类型")
    values: List[FacetValue] = Field(..., description="分面值列表")
    total_count: Optional[int] = Field(None, description="该字段的总文档数")


class SearchResponse(BaseModel):
    """搜索响应模型(重构版)"""
    
    # 核心结果
    hits: List[Dict[str, Any]] = Field(..., description="搜索结果列表")
    total: int = Field(..., description="匹配的总文档数")
    max_score: float = Field(..., description="最高相关性分数")
    
    # 分面搜索结果(标准化格式)
    facets: Optional[List[FacetResult]] = Field(
        None,
        description="分面统计结果(标准化格式)"
    )
    
    # 查询信息
    query_info: Dict[str, Any] = Field(
        default_factory=dict,
        description="查询处理信息(原始查询、改写、语言检测、翻译等)"
    )
    
    # 推荐与建议(预留)
    related_queries: Optional[List[str]] = Field(None, description="相关搜索查询")
    
    # 性能指标
    took_ms: int = Field(..., description="搜索总耗时(毫秒)")
    performance_info: Optional[Dict[str, Any]] = Field(None, description="详细性能信息")
    
    # 调试信息
    debug_info: Optional[Dict[str, Any]] = Field(None, description="调试信息(仅当 debug=True)")


class SearchSuggestResponse(BaseModel):
    """搜索建议响应模型(框架,暂不实现)"""
    query: str = Field(..., description="原始查询")
    suggestions: List[Dict[str, Any]] = Field(..., description="建议列表")
    took_ms: int = Field(..., description="耗时(毫秒)")


class DocumentResponse(BaseModel):
    """Single document response model."""
    id: str = Field(..., description="Document ID")
    source: Dict[str, Any] = Field(..., description="Document source")


class HealthResponse(BaseModel):
    """Health check response model."""
    status: str = Field(..., description="Service status")
    elasticsearch: str = Field(..., description="Elasticsearch status")
    customer_id: str = Field(..., description="Customer configuration ID")


class ErrorResponse(BaseModel):
    """Error response model."""
    error: str = Field(..., description="Error message")
    detail: Optional[str] = Field(None, description="Detailed error information")