query_parser.py 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
"""
Query parser - main module for query processing.

Handles query rewriting, translation, and embedding generation.
"""

from typing import Dict, List, Optional, Any, Union
import numpy as np
import logging
import re
import hanlp
from concurrent.futures import Future, ThreadPoolExecutor, as_completed

from embeddings import BgeEncoder
from config import SearchConfig
from .language_detector import LanguageDetector
from .translator import Translator
from .query_rewriter import QueryRewriter, QueryNormalizer

logger = logging.getLogger(__name__)


class ParsedQuery:
    """Container for parsed query results."""

    def __init__(
        self,
        original_query: str,
        normalized_query: str,
        rewritten_query: Optional[str] = None,
        detected_language: Optional[str] = None,
        translations: Dict[str, str] = None,
        query_vector: Optional[np.ndarray] = None,
        domain: str = "default",
        keywords: str = "",
        token_count: int = 0,
        is_short_query: bool = False,
        is_long_query: bool = False
    ):
        self.original_query = original_query
        self.normalized_query = normalized_query
        self.rewritten_query = rewritten_query or normalized_query
        self.detected_language = detected_language
        self.translations = translations or {}
        self.query_vector = query_vector
        self.domain = domain
        # Query analysis fields
        self.keywords = keywords
        self.token_count = token_count
        self.is_short_query = is_short_query
        self.is_long_query = is_long_query

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary representation."""
        result = {
            "original_query": self.original_query,
            "normalized_query": self.normalized_query,
            "rewritten_query": self.rewritten_query,
            "detected_language": self.detected_language,
            "translations": self.translations,
            "domain": self.domain,
            "has_vector": self.query_vector is not None
        }
        return result


class QueryParser:
    """
    Main query parser that processes queries through multiple stages:
    1. Normalization
    2. Query rewriting (brand/category mappings, synonyms)
    3. Language detection
    4. Translation to target languages
    5. Text embedding generation (for semantic search)
    """

    def __init__(
        self,
        config: SearchConfig,
        text_encoder: Optional[BgeEncoder] = None,
        translator: Optional[Translator] = None
    ):
        """
        Initialize query parser.

        Args:
            config: SearchConfig instance
            text_encoder: Text embedding encoder (lazy loaded if not provided)
            translator: Translator instance (lazy loaded if not provided)
        """
        self.config = config
        self._text_encoder = text_encoder
        self._translator = translator

        # Initialize components
        self.normalizer = QueryNormalizer()
        self.language_detector = LanguageDetector()
        self.rewriter = QueryRewriter(config.query_config.rewrite_dictionary)
        
        # Initialize HanLP components at startup
        logger.info("Initializing HanLP components...")
        self._tok = hanlp.load(hanlp.pretrained.tok.CTB9_TOK_ELECTRA_BASE_CRF)
        self._tok.config.output_spans = True
        self._pos_tag = hanlp.load(hanlp.pretrained.pos.CTB9_POS_ELECTRA_SMALL)
        logger.info("HanLP components initialized")

    @property
    def text_encoder(self) -> BgeEncoder:
        """Lazy load text encoder."""
        if self._text_encoder is None and self.config.query_config.enable_text_embedding:
            logger.info("Initializing text encoder (lazy load)...")
            self._text_encoder = BgeEncoder()
        return self._text_encoder

    @property
    def translator(self) -> Translator:
        """Lazy load translator."""
        if self._translator is None:
            logger.info("Initializing translator (lazy load)...")
            self._translator = Translator(
                api_key=self.config.query_config.translation_api_key,
                use_cache=True,
                glossary_id=self.config.query_config.translation_glossary_id,
                translation_context=self.config.query_config.translation_context
            )
        return self._translator
    
    def _extract_keywords(self, query: str) -> str:
        """Extract keywords (nouns with length > 1) from query."""
        tok_result = self._tok(query)
        if not tok_result:
            return ""
        
        words = [x[0] for x in tok_result]
        pos_tags = self._pos_tag(words)
        
        keywords = []
        for word, pos in zip(words, pos_tags):
            if len(word) > 1 and pos.startswith('N'):
                keywords.append(word)
        
        return " ".join(keywords)
    
    def _get_token_count(self, query: str) -> int:
        """Get token count using HanLP."""
        tok_result = self._tok(query)
        return len(tok_result) if tok_result else 0
    
    def _analyze_query_type(self, query: str, token_count: int) -> tuple:
        """Analyze query type: (is_short_query, is_long_query)."""
        is_quoted = query.startswith('"') and query.endswith('"')
        is_short = is_quoted or ((token_count <= 2 or len(query) <= 4) and ' ' not in query)
        is_long = token_count >= 4
        return is_short, is_long

    def parse(
        self,
        query: str,
        tenant_id: Optional[str] = None,
        generate_vector: bool = True,
        context: Optional[Any] = None
    ) -> ParsedQuery:
        """
        Parse query through all processing stages.

        Args:
            query: Raw query string
            generate_vector: Whether to generate query embedding
            context: Optional request context for tracking and logging

        Returns:
            ParsedQuery object with all processing results
        """
        # Initialize logger if context provided
        logger = context.logger if context else None
        if logger:
            logger.info(
                f"开始查询解析 | 原查询: '{query}' | 生成向量: {generate_vector}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )

        def log_info(msg):
            if context and hasattr(context, 'logger'):
                context.logger.info(msg, extra={'reqid': context.reqid, 'uid': context.uid})
            else:
                logger.info(msg)

        def log_debug(msg):
            if context and hasattr(context, 'logger'):
                context.logger.debug(msg, extra={'reqid': context.reqid, 'uid': context.uid})
            else:
                logger.debug(msg)

        # Stage 1: Normalize
        normalized = self.normalizer.normalize(query)
        log_debug(f"标准化完成 | '{query}' -> '{normalized}'")
        if context:
            context.store_intermediate_result('normalized_query', normalized)

        # Extract domain if present (e.g., "brand:Nike" -> domain="brand", query="Nike")
        domain, query_text = self.normalizer.extract_domain_query(normalized)
        log_debug(f"域提取 | 域: '{domain}', 查询: '{query_text}'")
        if context:
            context.store_intermediate_result('extracted_domain', domain)
            context.store_intermediate_result('domain_query', query_text)

        # Stage 2: Query rewriting
        rewritten = None
        if self.config.query_config.rewrite_dictionary:  # Enable rewrite if dictionary exists
            rewritten = self.rewriter.rewrite(query_text)
            if rewritten != query_text:
                log_info(f"查询重写 | '{query_text}' -> '{rewritten}'")
                query_text = rewritten
                if context:
                    context.store_intermediate_result('rewritten_query', rewritten)
                    context.add_warning(f"查询被重写: {query_text}")

        # Stage 3: Language detection
        detected_lang = self.language_detector.detect(query_text)
        # Use default language if detection failed (None or "unknown")
        if not detected_lang or detected_lang == "unknown":
            detected_lang = self.config.query_config.default_language
        log_info(f"语言检测 | 检测到语言: {detected_lang}")
        if context:
            context.store_intermediate_result('detected_language', detected_lang)

        # Stage 4: Translation (with async support and conditional waiting)
        translations = {}
        translation_futures = {}
        try:
            # 根据租户配置决定翻译目标语言
            from config.tenant_config_loader import get_tenant_config_loader
            tenant_loader = get_tenant_config_loader()
            tenant_cfg = tenant_loader.get_tenant_config(tenant_id or "default")

            translate_to_zh = bool(tenant_cfg.get("translate_to_zh"))
            translate_to_en = bool(tenant_cfg.get("translate_to_en"))

            target_langs_for_translation = []
            if translate_to_zh:
                target_langs_for_translation.append('zh')
            if translate_to_en:
                target_langs_for_translation.append('en')

            # 如果该租户未开启任何翻译方向,则直接跳过翻译阶段
            if target_langs_for_translation:
                target_langs = [lang for lang in target_langs_for_translation if detected_lang != lang]

                if target_langs:
                    # Use e-commerce context for better disambiguation
                    translation_context = self.config.query_config.translation_context
                    # For query translation, we use a general prompt (not language-specific)
                    query_prompt = self.config.query_config.translation_prompts.get('query_zh') or \
                                  self.config.query_config.translation_prompts.get('default_zh')
                    
                    # Determine if we need to wait for translation results
                    # If detected_lang is neither 'en' nor 'zh', we must wait for translation
                    need_wait_translation = detected_lang not in ['en', 'zh']
                    
                    if need_wait_translation:
                        # Use async method that returns Futures, so we can wait for results
                        translation_results = self.translator.translate_multi_async(
                            query_text,
                            target_langs,
                            source_lang=detected_lang,
                            context=translation_context,
                            prompt=query_prompt
                        )
                        # Separate cached results and futures
                        for lang, result in translation_results.items():
                            if isinstance(result, Future):
                                translation_futures[lang] = result
                            else:
                                translations[lang] = result
                    else:
                        # Use async mode: returns cached translations immediately, missing ones translated in background
                        translations = self.translator.translate_multi(
                            query_text,
                            target_langs,
                            source_lang=detected_lang,
                            context=translation_context,
                            async_mode=True,
                            prompt=query_prompt
                        )
                        # Filter out None values (missing translations that are being processed async)
                        translations = {k: v for k, v in translations.items() if v is not None}
                    
                    if translations:
                        log_info(f"翻译完成(缓存命中) | 结果: {translations}")
                    if translation_futures:
                        log_debug(f"翻译进行中,等待结果... | 语言: {list(translation_futures.keys())}")
                    
                    if context:
                        context.store_intermediate_result('translations', translations)
                        for lang, translation in translations.items():
                            if translation:
                                context.store_intermediate_result(f'translation_{lang}', translation)

        except Exception as e:
            error_msg = f"翻译失败 | 错误: {str(e)}"
            log_info(error_msg)
            if context:
                context.add_warning(error_msg)

        # Stage 5: Query analysis (keywords, token count, query type)
        keywords = self._extract_keywords(query_text)
        token_count = self._get_token_count(query_text)
        is_short_query, is_long_query = self._analyze_query_type(query_text, token_count)
        
        log_debug(f"查询分析 | 关键词: {keywords} | token数: {token_count} | "
                 f"短查询: {is_short_query} | 长查询: {is_long_query}")
        if context:
            context.store_intermediate_result('keywords', keywords)
            context.store_intermediate_result('token_count', token_count)
            context.store_intermediate_result('is_short_query', is_short_query)
            context.store_intermediate_result('is_long_query', is_long_query)
        
        # Stage 6: Text embedding (only for non-short queries) - async execution
        query_vector = None
        embedding_future = None
        should_generate_embedding = (
            generate_vector and
            self.config.query_config.enable_text_embedding and
            domain == "default" and
            not is_short_query
        )
        
        encoding_executor = None
        if should_generate_embedding:
            try:
                log_debug("开始生成查询向量(异步)")
                # Submit encoding task to thread pool for async execution
                encoding_executor = ThreadPoolExecutor(max_workers=1)
                embedding_future = encoding_executor.submit(
                    lambda: self.text_encoder.encode([query_text])[0]
                )
            except Exception as e:
                error_msg = f"查询向量生成任务提交失败 | 错误: {str(e)}"
                log_info(error_msg)
                if context:
                    context.add_warning(error_msg)
                encoding_executor = None
                embedding_future = None
        
        # Wait for all async tasks to complete (translation and embedding)
        if translation_futures or embedding_future:
            log_debug("等待异步任务完成...")
            
            # Collect all futures with their identifiers
            all_futures = []
            future_to_lang = {}
            for lang, future in translation_futures.items():
                all_futures.append(future)
                future_to_lang[future] = ('translation', lang)
            
            if embedding_future:
                all_futures.append(embedding_future)
                future_to_lang[embedding_future] = ('embedding', None)
            
            # Wait for all futures to complete
            for future in as_completed(all_futures):
                task_type, lang = future_to_lang[future]
                try:
                    result = future.result()
                    if task_type == 'translation':
                        if result:
                            translations[lang] = result
                            log_info(f"翻译完成 | {lang}: {result}")
                            if context:
                                context.store_intermediate_result(f'translation_{lang}', result)
                    elif task_type == 'embedding':
                        query_vector = result
                        log_debug(f"查询向量生成完成 | 形状: {query_vector.shape}")
                        if context:
                            context.store_intermediate_result('query_vector_shape', query_vector.shape)
                except Exception as e:
                    if task_type == 'translation':
                        error_msg = f"翻译失败 | 语言: {lang} | 错误: {str(e)}"
                    else:
                        error_msg = f"查询向量生成失败 | 错误: {str(e)}"
                    log_info(error_msg)
                    if context:
                        context.add_warning(error_msg)
            
            # Clean up encoding executor
            if encoding_executor:
                encoding_executor.shutdown(wait=False)
            
            # Update translations in context after all are complete
            if translations and context:
                context.store_intermediate_result('translations', translations)

        # Build result
        result = ParsedQuery(
            original_query=query,
            normalized_query=normalized,
            rewritten_query=rewritten,
            detected_language=detected_lang,
            translations=translations,
            query_vector=query_vector,
            domain=domain,
            keywords=keywords,
            token_count=token_count,
            is_short_query=is_short_query,
            is_long_query=is_long_query
        )

        if context and hasattr(context, 'logger'):
            context.logger.info(
                f"查询解析完成 | 原查询: '{query}' | 最终查询: '{rewritten or query_text}' | "
                f"语言: {detected_lang} | 域: {domain} | "
                f"翻译数量: {len(translations)} | 向量: {'是' if query_vector is not None else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        else:
            logger.info(
                f"查询解析完成 | 原查询: '{query}' | 最终查询: '{rewritten or query_text}' | "
                f"语言: {detected_lang} | 域: {domain}"
            )

        return result

    def get_search_queries(self, parsed_query: ParsedQuery) -> List[str]:
        """
        Get list of queries to search (original + translations).

        Args:
            parsed_query: Parsed query object

        Returns:
            List of query strings to search
        """
        queries = [parsed_query.rewritten_query]

        # Add translations
        for lang, translation in parsed_query.translations.items():
            if translation and translation != parsed_query.rewritten_query:
                queries.append(translation)

        return queries

    def update_rewrite_rules(self, rules: Dict[str, str]) -> None:
        """
        Update query rewrite rules.

        Args:
            rules: Dictionary of pattern -> replacement mappings
        """
        for pattern, replacement in rules.items():
            self.rewriter.add_rule(pattern, replacement)

    def get_rewrite_rules(self) -> Dict[str, str]:
        """Get current rewrite rules."""
        return self.rewriter.get_rules()