searcher.py
24.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
"""
Main Searcher module - executes search queries against Elasticsearch.
Handles query parsing, boolean expressions, ranking, and result formatting.
"""
from typing import Dict, Any, List, Optional, Union
import time
import logging
from utils.es_client import ESClient
from query import QueryParser, ParsedQuery
from embeddings import CLIPImageEncoder
from .boolean_parser import BooleanParser, QueryNode
from .es_query_builder import ESQueryBuilder
from .rerank_engine import RerankEngine
from .query_config import (
DEFAULT_INDEX_NAME,
DEFAULT_MATCH_FIELDS,
TEXT_EMBEDDING_FIELD,
IMAGE_EMBEDDING_FIELD,
SOURCE_FIELDS,
ENABLE_TRANSLATION,
ENABLE_TEXT_EMBEDDING,
RANKING_EXPRESSION
)
from context.request_context import RequestContext, RequestContextStage, create_request_context
from api.models import FacetResult, FacetValue
from api.result_formatter import ResultFormatter
logger = logging.getLogger(__name__)
class SearchResult:
"""Container for search results (外部友好格式)."""
def __init__(
self,
results: List[Any], # List[SpuResult]
total: int,
max_score: float,
took_ms: int,
facets: Optional[List[FacetResult]] = None,
query_info: Optional[Dict[str, Any]] = None,
suggestions: Optional[List[str]] = None,
related_searches: Optional[List[str]] = None,
debug_info: Optional[Dict[str, Any]] = None
):
self.results = results
self.total = total
self.max_score = max_score
self.took_ms = took_ms
self.facets = facets
self.query_info = query_info or {}
self.suggestions = suggestions or []
self.related_searches = related_searches or []
self.debug_info = debug_info
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary representation."""
result = {
"results": [r.model_dump() if hasattr(r, 'model_dump') else r for r in self.results],
"total": self.total,
"max_score": self.max_score,
"took_ms": self.took_ms,
"facets": [f.model_dump() for f in self.facets] if self.facets else None,
"query_info": self.query_info,
"suggestions": self.suggestions,
"related_searches": self.related_searches
}
if self.debug_info is not None:
result["debug_info"] = self.debug_info
return result
class Searcher:
"""
Main search engine class.
Handles:
- Query parsing and translation
- Boolean expression parsing
- ES query building
- Result ranking and formatting
"""
def __init__(
self,
es_client: ESClient,
query_parser: Optional[QueryParser] = None,
index_name: str = DEFAULT_INDEX_NAME
):
"""
Initialize searcher.
Args:
es_client: Elasticsearch client
query_parser: Query parser (created if not provided)
index_name: ES index name (default: search_products)
"""
self.es_client = es_client
self.index_name = index_name
self.query_parser = query_parser or QueryParser()
# Initialize components
self.boolean_parser = BooleanParser()
self.rerank_engine = RerankEngine(RANKING_EXPRESSION, enabled=False)
# Use constants from query_config
self.match_fields = DEFAULT_MATCH_FIELDS
self.text_embedding_field = TEXT_EMBEDDING_FIELD
self.image_embedding_field = IMAGE_EMBEDDING_FIELD
# Query builder - simplified single-layer architecture
self.query_builder = ESQueryBuilder(
index_name=index_name,
match_fields=self.match_fields,
text_embedding_field=self.text_embedding_field,
image_embedding_field=self.image_embedding_field,
source_fields=SOURCE_FIELDS
)
def search(
self,
query: str,
tenant_id: str,
size: int = 10,
from_: int = 0,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None,
facets: Optional[List[Any]] = None,
min_score: Optional[float] = None,
context: Optional[RequestContext] = None,
sort_by: Optional[str] = None,
sort_order: Optional[str] = "desc",
debug: bool = False,
language: str = "zh",
) -> SearchResult:
"""
Execute search query (外部友好格式).
Args:
query: Search query string
tenant_id: Tenant ID (required for filtering)
size: Number of results to return
from_: Offset for pagination
filters: Exact match filters
range_filters: Range filters for numeric fields
facets: Facet configurations for faceted search
min_score: Minimum score threshold
context: Request context for tracking (created if not provided)
sort_by: Field name for sorting
sort_order: Sort order: 'asc' or 'desc'
debug: Enable debug information output
Returns:
SearchResult object with formatted results
"""
# Create context if not provided (backward compatibility)
if context is None:
context = create_request_context()
# Always use config defaults (these are backend configuration, not user parameters)
enable_translation = ENABLE_TRANSLATION
enable_embedding = ENABLE_TEXT_EMBEDDING
enable_rerank = False # Temporarily disabled
# Start timing
context.start_stage(RequestContextStage.TOTAL)
context.logger.info(
f"开始搜索请求 | 查询: '{query}' | 参数: size={size}, from_={from_}, "
f"enable_translation={enable_translation}, enable_embedding={enable_embedding}, "
f"enable_rerank={enable_rerank}, min_score={min_score}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
# Store search parameters in context
context.metadata['search_params'] = {
'size': size,
'from_': from_,
'filters': filters,
'range_filters': range_filters,
'facets': facets,
'enable_translation': enable_translation,
'enable_embedding': enable_embedding,
'enable_rerank': enable_rerank,
'min_score': min_score,
'sort_by': sort_by,
'sort_order': sort_order
}
context.metadata['feature_flags'] = {
'translation_enabled': enable_translation,
'embedding_enabled': enable_embedding,
'rerank_enabled': enable_rerank
}
# Step 1: Parse query
context.start_stage(RequestContextStage.QUERY_PARSING)
try:
parsed_query = self.query_parser.parse(
query,
generate_vector=enable_embedding,
context=context
)
# Store query analysis results in context
context.store_query_analysis(
original_query=parsed_query.original_query,
normalized_query=parsed_query.normalized_query,
rewritten_query=parsed_query.rewritten_query,
detected_language=parsed_query.detected_language,
translations=parsed_query.translations,
query_vector=parsed_query.query_vector.tolist() if parsed_query.query_vector is not None else None,
domain=parsed_query.domain,
is_simple_query=self.boolean_parser.is_simple_query(parsed_query.rewritten_query)
)
context.logger.info(
f"查询解析完成 | 原查询: '{parsed_query.original_query}' | "
f"重写后: '{parsed_query.rewritten_query}' | "
f"语言: {parsed_query.detected_language} | "
f"域: {parsed_query.domain} | "
f"向量: {'是' if parsed_query.query_vector is not None else '否'}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"查询解析失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.QUERY_PARSING)
# Step 2: Boolean parsing
context.start_stage(RequestContextStage.BOOLEAN_PARSING)
try:
query_node = None
if self.boolean_parser.is_simple_query(parsed_query.rewritten_query):
# Simple query
query_text = parsed_query.rewritten_query
context.logger.debug(
f"简单查询 | 无布尔表达式",
extra={'reqid': context.reqid, 'uid': context.uid}
)
else:
# Complex boolean query
query_node = self.boolean_parser.parse(parsed_query.rewritten_query)
query_text = parsed_query.rewritten_query
context.store_intermediate_result('query_node', query_node)
context.store_intermediate_result('boolean_ast', str(query_node))
context.logger.info(
f"布尔表达式解析 | AST: {query_node}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"布尔表达式解析失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.BOOLEAN_PARSING)
# Step 3: Query building
context.start_stage(RequestContextStage.QUERY_BUILDING)
try:
# Add tenant_id to filters (required)
if filters is None:
filters = {}
filters['tenant_id'] = tenant_id
es_query = self.query_builder.build_query(
query_text=parsed_query.rewritten_query or parsed_query.normalized_query,
query_vector=parsed_query.query_vector if enable_embedding else None,
query_node=query_node,
filters=filters,
range_filters=range_filters,
size=size,
from_=from_,
enable_knn=enable_embedding and parsed_query.query_vector is not None,
min_score=min_score
)
# Add facets for faceted search
if facets:
facet_aggs = self.query_builder.build_facets(facets)
if facet_aggs:
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"].update(facet_aggs)
# Add sorting if specified
if sort_by:
es_query = self.query_builder.add_sorting(es_query, sort_by, sort_order)
# Extract size and from from body for ES client parameters
body_for_es = {k: v for k, v in es_query.items() if k not in ['size', 'from']}
# Store ES query in context
context.store_intermediate_result('es_query', es_query)
context.store_intermediate_result('es_body_for_search', body_for_es)
context.logger.info(
f"ES查询构建完成 | 大小: {len(str(es_query))}字符 | "
f"KNN: {'是' if enable_embedding and parsed_query.query_vector is not None else '否'} | "
f"分面: {'是' if facets else '否'}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
context.logger.debug(
f"ES查询详情: {es_query}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"ES查询构建失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.QUERY_BUILDING)
# Step 4: Elasticsearch search
context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
try:
es_response = self.es_client.search(
index_name=self.index_name,
body=body_for_es,
size=size,
from_=from_
)
# Store ES response in context
context.store_intermediate_result('es_response', es_response)
# Extract timing from ES response
es_took = es_response.get('took', 0)
context.logger.info(
f"ES搜索完成 | 耗时: {es_took}ms | "
f"命中数: {es_response.get('hits', {}).get('total', {}).get('value', 0)} | "
f"最高分: {(es_response.get('hits', {}).get('max_score') or 0):.3f}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"ES搜索执行失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
# Step 5: Result processing
context.start_stage(RequestContextStage.RESULT_PROCESSING)
try:
# Extract ES hits
es_hits = []
if 'hits' in es_response and 'hits' in es_response['hits']:
es_hits = es_response['hits']['hits']
# Extract total and max_score
total = es_response.get('hits', {}).get('total', {})
if isinstance(total, dict):
total_value = total.get('value', 0)
else:
total_value = total
max_score = es_response.get('hits', {}).get('max_score') or 0.0
# Format results using ResultFormatter
formatted_results = ResultFormatter.format_search_results(
es_hits,
max_score,
language=language
)
# Format facets
standardized_facets = None
if facets:
standardized_facets = ResultFormatter.format_facets(
es_response.get('aggregations', {}),
facets
)
# Generate suggestions and related searches
query_text = parsed_query.original_query if parsed_query else query
suggestions = ResultFormatter.generate_suggestions(query_text, formatted_results)
related_searches = ResultFormatter.generate_related_searches(query_text, formatted_results)
context.logger.info(
f"结果处理完成 | 返回: {len(formatted_results)}条 | 总计: {total_value}条",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"结果处理失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.RESULT_PROCESSING)
# End total timing and build result
total_duration = context.end_stage(RequestContextStage.TOTAL)
context.performance_metrics.total_duration = total_duration
# Collect debug information if requested
debug_info = None
if debug:
debug_info = {
"query_analysis": {
"original_query": context.query_analysis.original_query,
"normalized_query": context.query_analysis.normalized_query,
"rewritten_query": context.query_analysis.rewritten_query,
"detected_language": context.query_analysis.detected_language,
"translations": context.query_analysis.translations,
"has_vector": context.query_analysis.query_vector is not None,
"is_simple_query": context.query_analysis.is_simple_query,
"boolean_ast": context.get_intermediate_result('boolean_ast'),
"domain": context.query_analysis.domain
},
"es_query": context.get_intermediate_result('es_query', {}),
"es_response": {
"took_ms": es_response.get('took', 0),
"total_hits": total_value,
"max_score": max_score,
"shards": es_response.get('_shards', {})
},
"feature_flags": context.metadata.get('feature_flags', {}),
"stage_timings": {
k: round(v, 2) for k, v in context.performance_metrics.stage_timings.items()
},
"search_params": context.metadata.get('search_params', {})
}
# Build result
result = SearchResult(
results=formatted_results,
total=total_value,
max_score=max_score,
took_ms=int(total_duration),
facets=standardized_facets,
query_info=parsed_query.to_dict(),
suggestions=suggestions,
related_searches=related_searches,
debug_info=debug_info
)
# Log complete performance summary
context.log_performance_summary()
return result
def search_by_image(
self,
image_url: str,
tenant_id: str,
size: int = 10,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None
) -> SearchResult:
"""
Search by image similarity (外部友好格式).
Args:
image_url: URL of query image
tenant_id: Tenant ID (required for filtering)
size: Number of results
filters: Exact match filters
range_filters: Range filters for numeric fields
Returns:
SearchResult object with formatted results
"""
if not self.image_embedding_field:
raise ValueError("Image embedding field not configured")
# Generate image embedding
image_encoder = CLIPImageEncoder()
image_vector = image_encoder.encode_image_from_url(image_url)
if image_vector is None:
raise ValueError(f"Failed to encode image: {image_url}")
# Add tenant_id to filters (required)
if filters is None:
filters = {}
filters['tenant_id'] = tenant_id
# Build KNN query
es_query = {
"size": size,
"knn": {
"field": self.image_embedding_field,
"query_vector": image_vector.tolist(),
"k": size,
"num_candidates": size * 10
}
}
# Add _source filtering if source_fields are configured
if SOURCE_FIELDS:
es_query["_source"] = {
"includes": SOURCE_FIELDS
}
if filters or range_filters:
filter_clauses = self.query_builder._build_filters(filters, range_filters)
if filter_clauses:
es_query["query"] = {
"bool": {
"filter": filter_clauses
}
}
# Execute search
es_response = self.es_client.search(
index_name=self.index_name,
body=es_query,
size=size
)
# Extract ES hits
es_hits = []
if 'hits' in es_response and 'hits' in es_response['hits']:
es_hits = es_response['hits']['hits']
# Extract total and max_score
total = es_response.get('hits', {}).get('total', {})
if isinstance(total, dict):
total_value = total.get('value', 0)
else:
total_value = total
max_score = es_response.get('hits', {}).get('max_score') or 0.0
# Format results using ResultFormatter
formatted_results = ResultFormatter.format_search_results(es_hits, max_score)
return SearchResult(
results=formatted_results,
total=total_value,
max_score=max_score,
took_ms=es_response.get('took', 0),
facets=None,
query_info={'image_url': image_url, 'search_type': 'image_similarity'},
suggestions=[],
related_searches=[]
)
def get_domain_summary(self) -> Dict[str, Any]:
"""
Get summary of all configured domains.
Returns:
Dictionary with domain information
"""
return self.query_builder.get_domain_summary()
def get_document(self, doc_id: str) -> Optional[Dict[str, Any]]:
"""
Get single document by ID.
Args:
doc_id: Document ID
Returns:
Document or None if not found
"""
try:
response = self.es_client.client.get(
index=self.index_name,
id=doc_id
)
return response.get('_source')
except Exception as e:
logger.error(f"Failed to get document {doc_id}: {e}", exc_info=True)
return None
def _standardize_facets(
self,
es_aggregations: Dict[str, Any],
facet_configs: Optional[List[Union[str, Any]]],
current_filters: Optional[Dict[str, Any]]
) -> Optional[List[FacetResult]]:
"""
将 ES 聚合结果转换为标准化的分面格式(返回 Pydantic 模型)。
Args:
es_aggregations: ES 原始聚合结果
facet_configs: 分面配置列表(str 或 FacetConfig)
current_filters: 当前应用的过滤器
Returns:
标准化的分面结果列表(FacetResult 对象)
"""
if not es_aggregations or not facet_configs:
return None
standardized_facets: List[FacetResult] = []
for config in facet_configs:
# 解析配置
if isinstance(config, str):
field = config
facet_type = "terms"
else:
# FacetConfig 对象
field = config.field
facet_type = config.type
agg_name = f"{field}_facet"
if agg_name not in es_aggregations:
continue
agg_result = es_aggregations[agg_name]
# 获取当前字段的选中值
selected_values = set()
if current_filters and field in current_filters:
filter_value = current_filters[field]
if isinstance(filter_value, list):
selected_values = set(filter_value)
else:
selected_values = {filter_value}
# 转换 buckets 为 FacetValue 对象
facet_values: List[FacetValue] = []
if 'buckets' in agg_result:
for bucket in agg_result['buckets']:
value = bucket.get('key')
count = bucket.get('doc_count', 0)
facet_values.append(FacetValue(
value=value,
label=str(value),
count=count,
selected=value in selected_values
))
# 构建 FacetResult 对象
facet_result = FacetResult(
field=field,
label=self._get_field_label(field),
type=facet_type,
values=facet_values
)
standardized_facets.append(facet_result)
return standardized_facets if standardized_facets else None
def _get_field_label(self, field: str) -> str:
"""获取字段的显示标签"""
# 字段标签映射(简化版,不再从配置读取)
field_labels = {
"category1_name": "一级分类",
"category2_name": "二级分类",
"category3_name": "三级分类",
"specifications": "规格"
}
return field_labels.get(field, field)