es_query_builder.py
18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
Elasticsearch query builder.
Converts parsed queries and search parameters into ES DSL queries.
Simplified architecture:
- filters and (text_recall or embedding_recall)
- function_score wrapper for boosting fields
"""
from typing import Dict, Any, List, Optional, Union
import numpy as np
from .boolean_parser import QueryNode
from .query_config import FUNCTION_SCORE_CONFIG
class ESQueryBuilder:
"""Builds Elasticsearch DSL queries."""
def __init__(
self,
index_name: str,
match_fields: List[str],
text_embedding_field: Optional[str] = None,
image_embedding_field: Optional[str] = None,
source_fields: Optional[List[str]] = None
):
"""
Initialize query builder.
Args:
index_name: ES index name
match_fields: Fields to search for text matching
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
source_fields: Fields to return in search results (_source includes)
"""
self.index_name = index_name
self.match_fields = match_fields
self.text_embedding_field = text_embedding_field
self.image_embedding_field = image_embedding_field
self.source_fields = source_fields
def build_query(
self,
query_text: str,
query_vector: Optional[np.ndarray] = None,
query_node: Optional[QueryNode] = None,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None,
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
min_score: Optional[float] = None
) -> Dict[str, Any]:
"""
Build complete ES query (简化版).
结构:filters and (text_recall or embedding_recall)
- filters: 前端传递的过滤条件永远起作用
- text_recall: 文本相关性召回(中英文字段都用)
- embedding_recall: 向量召回(KNN)
- function_score: 包装召回部分,支持提权字段
Args:
query_text: Query text for BM25 matching
query_vector: Query embedding for KNN search
query_node: Parsed boolean expression tree
filters: Exact match filters (always applied)
range_filters: Range filters for numeric fields (always applied)
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
es_query = {
"size": size,
"from": from_
}
# Add _source filtering if source_fields are configured
if self.source_fields:
es_query["_source"] = {
"includes": self.source_fields
}
# 1. Build recall queries (text or embedding)
recall_clauses = []
# Text recall (always include if query_text exists)
if query_text:
if query_node and query_node.operator != 'TERM':
# Complex boolean query
text_query = self._build_boolean_query(query_node)
else:
# Simple text query
text_query = self._build_text_query(query_text)
recall_clauses.append(text_query)
# Embedding recall (KNN - separate from query, handled below)
has_embedding = enable_knn and query_vector is not None and self.text_embedding_field
# 2. Build filter clauses (always applied)
filter_clauses = self._build_filters(filters, range_filters)
# 3. Build main query structure: filters and recall
if recall_clauses:
# Combine text recalls with OR logic (if multiple)
if len(recall_clauses) == 1:
recall_query = recall_clauses[0]
else:
recall_query = {
"bool": {
"should": recall_clauses,
"minimum_should_match": 1
}
}
# Wrap recall with function_score for boosting
recall_query = self._wrap_with_function_score(recall_query)
# Combine filters and recall
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [recall_query],
"filter": filter_clauses
}
}
else:
es_query["query"] = recall_query
else:
# No recall queries, only filters (match_all filtered)
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [{"match_all": {}}],
"filter": filter_clauses
}
}
else:
es_query["query"] = {"match_all": {}}
# 4. Add KNN search if enabled (separate from query, ES will combine)
if has_embedding:
knn_clause = {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
"num_candidates": knn_num_candidates,
"boost": 0.2 # Lower boost for embedding recall
}
es_query["knn"] = knn_clause
# 5. Add minimum score filter
if min_score is not None:
es_query["min_score"] = min_score
return es_query
def _wrap_with_function_score(self, query: Dict[str, Any]) -> Dict[str, Any]:
"""
Wrap query with function_score for boosting fields.
Args:
query: Base query to wrap
Returns:
Function score query or original query if no functions configured
"""
functions = self._build_score_functions()
# If no functions configured, return original query
if not functions:
return query
# Build function_score query
function_score_query = {
"function_score": {
"query": query,
"functions": functions,
"score_mode": FUNCTION_SCORE_CONFIG.get("score_mode", "sum"),
"boost_mode": FUNCTION_SCORE_CONFIG.get("boost_mode", "multiply")
}
}
return function_score_query
def _build_score_functions(self) -> List[Dict[str, Any]]:
"""
Build function_score functions from config.
Returns:
List of function score functions
"""
functions = []
config_functions = FUNCTION_SCORE_CONFIG.get("functions", [])
for func_config in config_functions:
func_type = func_config.get("type")
if func_type == "filter_weight":
# Filter + Weight
functions.append({
"filter": func_config["filter"],
"weight": func_config.get("weight", 1.0)
})
elif func_type == "field_value_factor":
# Field Value Factor
functions.append({
"field_value_factor": {
"field": func_config["field"],
"factor": func_config.get("factor", 1.0),
"modifier": func_config.get("modifier", "none"),
"missing": func_config.get("missing", 1.0)
}
})
elif func_type == "decay":
# Decay Function (gauss/exp/linear)
decay_func = func_config.get("function", "gauss")
field = func_config["field"]
decay_params = {
"origin": func_config.get("origin", "now"),
"scale": func_config["scale"]
}
if "offset" in func_config:
decay_params["offset"] = func_config["offset"]
if "decay" in func_config:
decay_params["decay"] = func_config["decay"]
functions.append({
decay_func: {
field: decay_params
}
})
return functions
def _build_text_query(self, query_text: str) -> Dict[str, Any]:
"""
Build simple text matching query (BM25).
Args:
query_text: Query text
Returns:
ES query clause
"""
return {
"multi_match": {
"query": query_text,
"fields": self.match_fields,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": 1.0,
"_name": "base_query"
}
}
def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
"""
Build query from boolean expression tree.
Args:
node: Query tree node
Returns:
ES query clause
"""
if node.operator == 'TERM':
# Leaf node - simple text query
return self._build_text_query(node.value)
elif node.operator == 'AND':
# All terms must match
return {
"bool": {
"must": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
elif node.operator == 'OR':
# Any term must match
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
],
"minimum_should_match": 1
}
}
elif node.operator == 'ANDNOT':
# First term must match, second must not
if len(node.terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query(node.terms[0])],
"must_not": [self._build_boolean_query(node.terms[1])]
}
}
else:
return self._build_boolean_query(node.terms[0])
elif node.operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
else:
# Unknown operator
return {"match_all": {}}
def _build_filters(
self,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, 'RangeFilter']] = None
) -> List[Dict[str, Any]]:
"""
构建过滤子句。
Args:
filters: 精确匹配过滤器字典
range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
Returns:
ES filter 子句列表
"""
filter_clauses = []
# 1. 处理精确匹配过滤
if filters:
for field, value in filters.items():
if isinstance(value, list):
# 多值匹配(OR)
filter_clauses.append({
"terms": {field: value}
})
else:
# 单值精确匹配
filter_clauses.append({
"term": {field: value}
})
# 2. 处理范围过滤(支持 RangeFilter Pydantic 模型或字典)
if range_filters:
for field, range_filter in range_filters.items():
# 支持 Pydantic 模型或字典格式
if hasattr(range_filter, 'model_dump'):
# Pydantic 模型
range_dict = range_filter.model_dump(exclude_none=True)
elif isinstance(range_filter, dict):
# 已经是字典格式
range_dict = {k: v for k, v in range_filter.items() if v is not None}
else:
# 其他格式,跳过
continue
if range_dict:
filter_clauses.append({
"range": {field: range_dict}
})
return filter_clauses
def add_spu_collapse(
self,
es_query: Dict[str, Any],
spu_field: str,
inner_hits_size: int = 3
) -> Dict[str, Any]:
"""
Add SPU aggregation/collapse to query.
Args:
es_query: Existing ES query
spu_field: Field containing SPU ID
inner_hits_size: Number of SKUs to return per SPU
Returns:
Modified ES query
"""
# Add collapse
es_query["collapse"] = {
"field": spu_field,
"inner_hits": {
"_source": False,
"name": "top_docs",
"size": inner_hits_size
}
}
# Add cardinality aggregation to count unique SPUs
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"]["unique_count"] = {
"cardinality": {
"field": spu_field
}
}
return es_query
def add_sorting(
self,
es_query: Dict[str, Any],
sort_by: str,
sort_order: str = "desc"
) -> Dict[str, Any]:
"""
Add sorting to ES query.
Args:
es_query: Existing ES query
sort_by: Field name for sorting
sort_order: Sort order: 'asc' or 'desc'
Returns:
Modified ES query
"""
if not sort_by:
return es_query
if not sort_order:
sort_order = "desc"
if "sort" not in es_query:
es_query["sort"] = []
# Add the specified sort
sort_field = {
sort_by: {
"order": sort_order.lower()
}
}
es_query["sort"].append(sort_field)
return es_query
def build_facets(
self,
facet_configs: Optional[List[Union[str, 'FacetConfig']]] = None
) -> Dict[str, Any]:
"""
构建分面聚合。
支持:
1. 分类分面:category1_name, category2_name, category3_name, category_name
2. specifications分面:嵌套聚合,按name聚合,然后按value聚合
Args:
facet_configs: 分面配置列表(标准格式):
- str: 字段名,使用默认 terms 配置
- FacetConfig: 详细的分面配置对象
- 特殊值 "specifications": 构建specifications嵌套分面
Returns:
ES aggregations 字典
"""
if not facet_configs:
return {}
aggs = {}
for config in facet_configs:
# 特殊处理:specifications嵌套分面
if isinstance(config, str) and config == "specifications":
# 构建specifications嵌套分面(按name聚合,然后按value聚合)
aggs["specifications_facet"] = {
"nested": {
"path": "specifications"
},
"aggs": {
"by_name": {
"terms": {
"field": "specifications.name",
"size": 20,
"order": {"_count": "desc"}
},
"aggs": {
"value_counts": {
"terms": {
"field": "specifications.value",
"size": 10,
"order": {"_count": "desc"}
}
}
}
}
}
}
continue
# 简单模式:只有字段名(字符串)
if isinstance(config, str):
field = config
agg_name = f"{field}_facet"
aggs[agg_name] = {
"terms": {
"field": field,
"size": 10,
"order": {"_count": "desc"}
}
}
# 高级模式:FacetConfig 对象
else:
# 此时 config 应该是 FacetConfig 对象
field = config.field
facet_type = config.type
size = config.size
agg_name = f"{field}_facet"
if facet_type == 'terms':
aggs[agg_name] = {
"terms": {
"field": field,
"size": size,
"order": {"_count": "desc"}
}
}
elif facet_type == 'range':
if config.ranges:
aggs[agg_name] = {
"range": {
"field": field,
"ranges": config.ranges
}
}
return aggs