translator.py
28.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
"""
Translation service for multi-language query support.
Supports DeepL API for high-quality translations.
#### 官方文档:
https://developers.deepl.com/api-reference/translate/request-translation
#####
"""
import requests
import re
import redis
from concurrent.futures import ThreadPoolExecutor, Future
from datetime import timedelta
from typing import Dict, List, Optional, Union
import logging
logger = logging.getLogger(__name__)
# Try to import DEEPL_AUTH_KEY and REDIS_CONFIG, but allow import to fail
try:
from config.env_config import DEEPL_AUTH_KEY, REDIS_CONFIG
except ImportError:
DEEPL_AUTH_KEY = None
REDIS_CONFIG = {}
class Translator:
"""Multi-language translator using DeepL API."""
DEEPL_API_URL = "https://api.deepl.com/v2/translate" # Pro tier
# Language code mapping
LANG_CODE_MAP = {
'zh': 'ZH',
'en': 'EN',
'ru': 'RU',
'ar': 'AR',
'ja': 'JA',
'es': 'ES',
'de': 'DE',
'fr': 'FR',
'it': 'IT',
'pt': 'PT',
}
def __init__(
self,
api_key: Optional[str] = None,
use_cache: bool = True,
timeout: int = 10,
glossary_id: Optional[str] = None,
translation_context: Optional[str] = None
):
"""
Initialize translator.
Args:
api_key: DeepL API key (or None to use from config/env)
use_cache: Whether to cache translations
timeout: Request timeout in seconds
glossary_id: DeepL glossary ID for custom terminology (optional)
translation_context: Context hint for translation (e.g., "e-commerce", "product search")
"""
# Get API key from config if not provided
if api_key is None and DEEPL_AUTH_KEY:
api_key = DEEPL_AUTH_KEY
self.api_key = api_key
self.timeout = timeout
self.use_cache = use_cache
self.glossary_id = glossary_id
self.translation_context = translation_context or "e-commerce product search"
# Initialize Redis cache if enabled
if use_cache:
try:
self.redis_client = redis.Redis(
host=REDIS_CONFIG.get('host', 'localhost'),
port=REDIS_CONFIG.get('port', 6479),
password=REDIS_CONFIG.get('password'),
decode_responses=True, # Return str instead of bytes
socket_timeout=REDIS_CONFIG.get('socket_timeout', 1),
socket_connect_timeout=REDIS_CONFIG.get('socket_connect_timeout', 1),
retry_on_timeout=REDIS_CONFIG.get('retry_on_timeout', False),
health_check_interval=10, # 避免复用坏连接
)
# Test connection
self.redis_client.ping()
self.expire_time = timedelta(days=REDIS_CONFIG.get('translation_cache_expire_days', 360))
self.cache_prefix = REDIS_CONFIG.get('translation_cache_prefix', 'trans')
logger.info("Redis cache initialized for translations")
except Exception as e:
logger.warning(f"Failed to initialize Redis cache: {e}, falling back to no cache")
self.redis_client = None
self.cache = None
else:
self.redis_client = None
self.cache = None
# Thread pool for async translation
self.executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix="translator")
def translate(
self,
text: str,
target_lang: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
) -> Optional[str]:
"""
Translate text to target language (synchronous mode).
Args:
text: Text to translate
target_lang: Target language code ('zh', 'en', 'ru', etc.)
source_lang: Source language code (optional, auto-detect if None)
context: Additional context for translation (overrides default context)
prompt: Translation prompt/instruction (optional, for better translation quality)
Returns:
Translated text or None if translation fails
"""
if not text or not text.strip():
return text
# Normalize language codes
target_lang = target_lang.lower()
if source_lang:
source_lang = source_lang.lower()
# Optimization: Skip translation if not needed
if target_lang == 'en' and self._is_english_text(text):
logger.info(f"[Translator] Text is already English, skipping translation: '{text[:50]}...'")
return text
if target_lang == 'zh' and (self._contains_chinese(text) or self._is_pure_number(text)):
logger.info(f"[Translator] Text contains Chinese or is pure number, skipping translation: '{text[:50]}...'")
return text
# Use provided context or default context
translation_context = context or self.translation_context
# Build cache key (include prompt in cache key if provided)
cache_key_parts = [source_lang or 'auto', target_lang, translation_context]
if prompt:
cache_key_parts.append(prompt)
cache_key_parts.append(text)
cache_key = ':'.join(cache_key_parts)
# Check cache (include context and prompt in cache key for accuracy)
if self.use_cache and self.redis_client:
cached = self._get_cached_translation_redis(text, target_lang, source_lang, translation_context, prompt)
if cached:
logger.info(
f"[Translator] Cache hit: source={source_lang or 'auto'} "
f"target={target_lang} | text='{text[:80]}...' -> '{cached[:80]}...'"
)
return cached
# If no API key, return mock translation (for testing)
if not self.api_key:
logger.debug(f"[Translator] No API key, returning original text (mock mode)")
return text
# Translate using DeepL (Pro endpoint only, no free fallback)
logger.info(
f"[Translator] Translating text: target={target_lang}, "
f"source={source_lang or 'auto'}, context={translation_context}, "
f"prompt={'yes' if prompt else 'no'} | text='{text[:80]}...'"
)
result = self._translate_deepl(text, target_lang, source_lang, translation_context, prompt)
# If still failed, return original text with warning
if result is None:
logger.warning(f"[Translator] Translation failed for '{text[:50]}...', returning original text")
result = text
logger.info(
f"[Translator] Translation completed: source={source_lang or 'auto'} "
f"target={target_lang} | original='{text[:80]}...' -> '{result[:80]}...'"
)
# Cache result
if result and self.use_cache and self.redis_client:
self._set_cached_translation_redis(text, target_lang, result, source_lang, translation_context, prompt)
return result
def _translate_deepl(
self,
text: str,
target_lang: str,
source_lang: Optional[str],
context: Optional[str] = None,
prompt: Optional[str] = None
) -> Optional[str]:
"""
Translate using DeepL API with context and glossary support.
Args:
text: Text to translate
target_lang: Target language code
source_lang: Source language code (optional)
context: Context hint for translation (e.g., "e-commerce product search")
"""
# Map to DeepL language codes
target_code = self.LANG_CODE_MAP.get(target_lang, target_lang.upper())
headers = {
"Authorization": f"DeepL-Auth-Key {self.api_key}",
"Content-Type": "application/json",
}
# Use prompt as context parameter for DeepL API (not as text prefix)
# According to DeepL API: context is "Additional context that can influence a translation but is not translated itself"
# If prompt is provided, use it as context; otherwise use the default context
api_context = prompt if prompt else context
# For e-commerce, add context words to help DeepL understand the domain
# This is especially important for single-word ambiguous terms like "车" (car vs rook)
text_to_translate, needs_extraction = self._add_ecommerce_context(text, source_lang, api_context)
payload = {
"text": [text_to_translate],
"target_lang": target_code,
}
if source_lang:
source_code = self.LANG_CODE_MAP.get(source_lang, source_lang.upper())
payload["source_lang"] = source_code
# Add context parameter (prompt or default context)
# Context influences translation but is not translated itself
if api_context:
payload["context"] = api_context
# Add glossary if configured
if self.glossary_id:
payload["glossary_id"] = self.glossary_id
# Note: DeepL API v2 supports "context" parameter for additional context
# that influences translation but is not translated itself.
# We use prompt as context parameter when provided.
try:
response = requests.post(
self.DEEPL_API_URL,
headers=headers,
json=payload,
timeout=self.timeout
)
if response.status_code == 200:
data = response.json()
if "translations" in data and len(data["translations"]) > 0:
translated_text = data["translations"][0]["text"]
# If we added context, extract just the term from the result
if needs_extraction:
translated_text = self._extract_term_from_translation(
translated_text, text, target_code
)
return translated_text
else:
logger.error(f"[Translator] DeepL API error: {response.status_code} - {response.text}")
return None
except requests.Timeout:
logger.warning(f"[Translator] Translation request timed out")
return None
except Exception as e:
logger.error(f"[Translator] Translation failed: {e}", exc_info=True)
return None
# NOTE: _translate_deepl_free is intentionally not implemented.
# We do not support automatic fallback to the free endpoint, to avoid
# mixing Pro keys with https://api-free.deepl.com and related 403 errors.
def translate_multi(
self,
text: str,
target_langs: List[str],
source_lang: Optional[str] = None,
context: Optional[str] = None,
async_mode: bool = True,
prompt: Optional[str] = None
) -> Dict[str, Optional[str]]:
"""
Translate text to multiple target languages.
In async_mode=True (default):
- Returns cached translations immediately if available
- For translations that can be optimized (e.g., pure numbers, already in target language),
returns result immediately via synchronous call
- Launches async tasks for other missing translations (non-blocking)
- Returns None for missing translations that require async processing
In async_mode=False:
- Waits for all translations to complete (blocking)
Args:
text: Text to translate
target_langs: List of target language codes
source_lang: Source language code (optional)
context: Context hint for translation (optional)
async_mode: If True, return cached results immediately and translate missing ones async
prompt: Translation prompt/instruction (optional)
Returns:
Dictionary mapping language code to translated text (only cached results in async mode)
"""
results = {}
missing_langs = []
async_langs = []
# First, get cached translations
for lang in target_langs:
cached = self._get_cached_translation(text, lang, source_lang, context, prompt)
if cached is not None:
results[lang] = cached
else:
missing_langs.append(lang)
# If async mode and there are missing translations
if async_mode and missing_langs:
# Check if translation can be optimized (immediate return)
for lang in missing_langs:
target_lang = lang.lower()
# Check optimization conditions (same as in translate method)
can_optimize = False
if target_lang == 'en' and self._is_english_text(text):
can_optimize = True
elif target_lang == 'zh' and (self._contains_chinese(text) or self._is_pure_number(text)):
can_optimize = True
if can_optimize:
# Can be optimized, call translate synchronously for immediate result
results[lang] = self.translate(text, lang, source_lang, context, prompt)
else:
# Requires actual translation, add to async list
async_langs.append(lang)
# Launch async tasks for translations that require actual API calls
if async_langs:
for lang in async_langs:
self._translate_async(text, lang, source_lang, context, prompt)
# Return None for async translations
for lang in async_langs:
results[lang] = None
else:
# Synchronous mode: wait for all translations
for lang in missing_langs:
results[lang] = self.translate(text, lang, source_lang, context, prompt)
return results
def translate_multi_async(
self,
text: str,
target_langs: List[str],
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
) -> Dict[str, Union[str, Future]]:
"""
Translate text to multiple target languages asynchronously, returning Futures that can be awaited.
This method returns a dictionary where:
- If translation is cached, the value is the translation string (immediate)
- If translation needs to be done, the value is a Future object that can be awaited
Args:
text: Text to translate
target_langs: List of target language codes
source_lang: Source language code (optional)
context: Context hint for translation (optional)
prompt: Translation prompt/instruction (optional)
Returns:
Dictionary mapping language code to either translation string (cached) or Future object
"""
results = {}
missing_langs = []
# First, get cached translations
for lang in target_langs:
cached = self._get_cached_translation(text, lang, source_lang, context, prompt)
if cached is not None:
results[lang] = cached
else:
missing_langs.append(lang)
# For missing translations, submit async tasks and return Futures
for lang in missing_langs:
future = self.executor.submit(
self.translate,
text,
lang,
source_lang,
context,
prompt
)
results[lang] = future
return results
def _get_cached_translation(
self,
text: str,
target_lang: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
) -> Optional[str]:
"""Get translation from cache if available."""
if not self.redis_client:
return None
return self._get_cached_translation_redis(text, target_lang, source_lang, context, prompt)
def _get_cached_translation_redis(
self,
text: str,
target_lang: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
) -> Optional[str]:
"""Get translation from Redis cache with sliding expiration."""
if not self.redis_client:
return None
try:
# Build cache key: prefix:target_lang:text
# For simplicity, we use target_lang and text as key
# Context and prompt are not included in key to maximize cache hits
cache_key = f"{self.cache_prefix}:{target_lang.upper()}:{text}"
value = self.redis_client.get(cache_key)
if value:
# Sliding expiration: reset expiration time on access
self.redis_client.expire(cache_key, self.expire_time)
logger.info(
f"[Translator] Redis cache hit: key={cache_key}, "
f"target={target_lang}, value='{value[:80]}...'"
)
return value
logger.debug(f"[Translator] Redis cache miss: key={cache_key}, target={target_lang}")
return None
except Exception as e:
logger.error(f"[Translator] Redis error during get translation cache: '{text}' {target_lang}: {e}")
return None
def _set_cached_translation_redis(
self,
text: str,
target_lang: str,
translation: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
) -> None:
"""Store translation in Redis cache."""
if not self.redis_client:
return
try:
cache_key = f"{self.cache_prefix}:{target_lang.upper()}:{text}"
self.redis_client.setex(cache_key, self.expire_time, translation)
logger.info(
f"[Translator] Cached translation: key={cache_key}, "
f"target={target_lang}, value='{translation}...'"
)
except Exception as e:
logger.error(f"[Translator] Redis error during set translation cache: '{text}' {target_lang}: {e}")
def _translate_async(
self,
text: str,
target_lang: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None
):
"""Launch async translation task."""
def _do_translate():
try:
result = self.translate(text, target_lang, source_lang, context, prompt)
if result:
logger.debug(f"Async translation completed: {text} -> {target_lang}: {result}")
except Exception as e:
logger.warning(f"Async translation failed: {text} -> {target_lang}: {e}")
self.executor.submit(_do_translate)
def _add_ecommerce_context(
self,
text: str,
source_lang: Optional[str],
context: Optional[str]
) -> tuple:
"""
Add e-commerce context to text for better disambiguation.
For single-word ambiguous Chinese terms, we add context words that help
DeepL understand this is an e-commerce/product search context.
Args:
text: Original text to translate
source_lang: Source language code
context: Context hint
Returns:
Tuple of (text_with_context, needs_extraction)
- text_with_context: Text to send to DeepL
- needs_extraction: Whether we need to extract the term from the result
"""
# Only apply for e-commerce context and Chinese source
if not context or "e-commerce" not in context.lower():
return text, False
if not source_lang or source_lang.lower() != 'zh':
return text, False
# For single-word queries, add context to help disambiguation
text_stripped = text.strip()
if len(text_stripped.split()) == 1 and len(text_stripped) <= 2:
# Common ambiguous Chinese e-commerce terms like "车" (car vs rook)
# We add a context phrase: "购买 [term]" (buy [term]) or "商品 [term]" (product [term])
# This helps DeepL understand the e-commerce context
# We'll need to extract just the term from the translation result
context_phrase = f"购买 {text_stripped}"
return context_phrase, True
# For multi-word queries, DeepL usually has enough context
return text, False
def _extract_term_from_translation(
self,
translated_text: str,
original_text: str,
target_lang_code: str
) -> str:
"""
Extract the actual term from a translation that included context.
For example, if we translated "购买 车" (buy car) and got "buy car",
we want to extract just "car".
Args:
translated_text: Full translation result
original_text: Original single-word query
target_lang_code: Target language code (EN, ZH, etc.)
Returns:
Extracted term or original translation if extraction fails
"""
# For English target, try to extract the last word (the actual term)
if target_lang_code == "EN":
words = translated_text.strip().split()
if len(words) > 1:
# Usually the last word is the term we want
# But we need to be smart - if it's "buy car", we want "car"
# Common context words to skip: buy, purchase, product, item, etc.
context_words = {"buy", "purchase", "product", "item", "commodity", "goods"}
# Try to find the term (not a context word)
for word in reversed(words):
word_lower = word.lower().rstrip('.,!?;:')
if word_lower not in context_words:
return word_lower
# If all words are context words, return the last one
return words[-1].lower().rstrip('.,!?;:')
# For other languages or if extraction fails, return as-is
# The user can configure a glossary for better results
return translated_text
def translate_for_indexing(
self,
text: str,
shop_language: str,
source_lang: Optional[str] = None,
context: Optional[str] = None,
prompt: Optional[str] = None,
translate_to_en: bool = True,
translate_to_zh: bool = True,
) -> Dict[str, Optional[str]]:
"""
Translate text for indexing based on shop language and tenant configuration.
Translation behavior:
- If translate_to_zh=True and shop language is not 'zh', translate to Chinese (zh)
- If translate_to_en=True and shop language is not 'en', translate to English (en)
- If both flags are False, no translation is performed (returns None for both)
Args:
text: Text to translate
shop_language: Shop's configured language (e.g., 'zh', 'en', 'ru')
source_lang: Source language code (optional, auto-detect if None)
context: Additional context for translation (optional)
prompt: Translation prompt/instruction (optional)
translate_to_en: Whether to translate to English (from tenant_config)
translate_to_zh: Whether to translate to Chinese (from tenant_config)
Returns:
Dictionary with 'zh' and 'en' keys containing translated text (or None if not needed/not enabled)
Example: {'zh': '中文翻译', 'en': 'English translation'} or {'zh': None, 'en': None}
"""
if not text or not text.strip():
return {'zh': None, 'en': None}
# Skip translation for symbol-only queries
if re.match(r'^[\d\s_-]+$', text):
logger.info(f"[Translator] Skip translation for symbol-only query: '{text}'")
return {'zh': None, 'en': None}
results = {'zh': None, 'en': None}
shop_lang_lower = shop_language.lower() if shop_language else ""
# Determine which languages need translation based on tenant configuration
targets = []
if translate_to_zh and "zh" not in shop_lang_lower:
targets.append("zh")
if translate_to_en and "en" not in shop_lang_lower:
targets.append("en")
# If shop language is already zh and en, no translation needed
if not targets:
# Use original text for both languages
if "zh" in shop_lang_lower:
results['zh'] = text
if "en" in shop_lang_lower:
results['en'] = text
return results
# Translate to each target language
for target_lang in targets:
# Check cache first
cached = self._get_cached_translation_redis(text, target_lang, source_lang, context, prompt)
if cached:
results[target_lang] = cached
logger.debug(f"[Translator] Cache hit for indexing: '{text}' -> {target_lang}: {cached}")
continue
# Translate synchronously for indexing (we need the result immediately)
translated = self.translate(
text,
target_lang=target_lang,
source_lang=source_lang or shop_language,
context=context,
prompt=prompt
)
results[target_lang] = translated
return results
def get_translation_needs(
self,
detected_lang: str,
supported_langs: List[str]
) -> List[str]:
"""
Determine which languages need translation.
Args:
detected_lang: Detected query language
supported_langs: List of supported languages
Returns:
List of language codes to translate to
"""
# If detected language is in supported list, translate to others
if detected_lang in supported_langs:
return [lang for lang in supported_langs if detected_lang != lang]
# Otherwise, translate to all supported languages
return supported_langs
def _is_english_text(self, text: str) -> bool:
"""
Check if text is primarily English (ASCII letters, numbers, common punctuation).
Args:
text: Text to check
Returns:
True if text appears to be English
"""
if not text or not text.strip():
return True
# Remove whitespace and common punctuation
text_clean = re.sub(r'[\s\.,!?;:\-\'\"\(\)\[\]{}]', '', text)
if not text_clean:
return True
# Check if all remaining characters are ASCII (letters, numbers)
# This is a simple heuristic: if most characters are ASCII, it's likely English
ascii_count = sum(1 for c in text_clean if ord(c) < 128)
ratio = ascii_count / len(text_clean) if text_clean else 0
# If more than 80% are ASCII characters, consider it English
return ratio > 0.8
def _contains_chinese(self, text: str) -> bool:
"""
Check if text contains Chinese characters (Han characters).
Args:
text: Text to check
Returns:
True if text contains Chinese characters
"""
if not text:
return False
# Check for Chinese characters (Unicode range: \u4e00-\u9fff)
chinese_pattern = re.compile(r'[\u4e00-\u9fff]')
return bool(chinese_pattern.search(text))
def _is_pure_number(self, text: str) -> bool:
"""
Check if text is purely numeric (digits, possibly with spaces, dots, commas).
Args:
text: Text to check
Returns:
True if text is purely numeric
"""
if not text or not text.strip():
return False
# Remove whitespace, dots, commas (common number separators)
text_clean = re.sub(r'[\s\.,]', '', text.strip())
if not text_clean:
return False
# Check if all remaining characters are digits
return text_clean.isdigit()