document_transformer.py 23.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
"""
SPU文档转换器 - 公共转换逻辑。

提取全量和增量索引共用的文档转换逻辑,避免代码冗余。
"""

import pandas as pd
import logging
from typing import Dict, Any, Optional, List
from config import ConfigLoader

logger = logging.getLogger(__name__)

# Try to import translator (optional dependency)
try:
    from query.translator import Translator
    TRANSLATOR_AVAILABLE = True
except ImportError:
    TRANSLATOR_AVAILABLE = False
    Translator = None


class SPUDocumentTransformer:
    """SPU文档转换器,将SPU、SKU、Option数据转换为ES文档格式。"""

    def __init__(
        self,
        category_id_to_name: Dict[str, str],
        searchable_option_dimensions: List[str],
        tenant_config: Optional[Dict[str, Any]] = None,
        translator: Optional[Any] = None,
        translation_prompts: Optional[Dict[str, str]] = None,
        encoder: Optional[Any] = None,
        enable_title_embedding: bool = True
    ):
        """
        初始化文档转换器。

        Args:
            category_id_to_name: 分类ID到名称的映射
            searchable_option_dimensions: 可搜索的option维度列表
            tenant_config: 租户配置(包含主语言和翻译配置)
            translator: 翻译器实例(可选,如果提供则启用翻译功能)
            translation_prompts: 翻译提示词配置(可选)
            encoder: 文本编码器实例(可选,用于生成title_embedding)
            enable_title_embedding: 是否启用标题向量化(默认True)
        """
        self.category_id_to_name = category_id_to_name
        self.searchable_option_dimensions = searchable_option_dimensions
        self.tenant_config = tenant_config or {}
        self.translator = translator
        self.translation_prompts = translation_prompts or {}
        self.encoder = encoder
        self.enable_title_embedding = enable_title_embedding

    def transform_spu_to_doc(
        self,
        tenant_id: str,
        spu_row: pd.Series,
        skus: pd.DataFrame,
        options: pd.DataFrame
    ) -> Optional[Dict[str, Any]]:
        """
        将单个SPU行和其SKUs转换为ES文档。

        Args:
            tenant_id: 租户ID
            spu_row: SPU行数据
            skus: SKU数据DataFrame
            options: Option数据DataFrame

        Returns:
            ES文档字典
        """
        doc = {}

        # Tenant ID (required)
        doc['tenant_id'] = str(tenant_id)

        # SPU ID
        spu_id = spu_row['id']
        doc['spu_id'] = str(spu_id)
        
        # Validate required fields
        if pd.isna(spu_row.get('title')) or not str(spu_row['title']).strip():
            logger.error(f"SPU {spu_id} has no title, this may cause search issues")

        # 获取租户配置
        primary_lang = self.tenant_config.get('primary_language', 'zh')

        # 文本字段处理(使用translator的内部逻辑自动处理多语言翻译)
        self._fill_text_fields(doc, spu_row, primary_lang)
        
        # 标题向量化处理(如果启用)
        if self.enable_title_embedding and self.encoder:
            self._fill_title_embedding(doc)

        # Tags
        if pd.notna(spu_row.get('tags')):
            tags_str = str(spu_row['tags'])
            doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]

        # Category相关字段
        self._fill_category_fields(doc, spu_row)

        # Option名称(从option表获取)
        self._fill_option_names(doc, options)

        # Image URL
        self._fill_image_url(doc, spu_row)

        # Sales (fake_sales)
        if pd.notna(spu_row.get('fake_sales')):
            try:
                doc['sales'] = int(spu_row['fake_sales'])
            except (ValueError, TypeError):
                doc['sales'] = 0
        else:
            doc['sales'] = 0

        # Process SKUs and build specifications
        skus_list, prices, compare_prices, sku_prices, sku_weights, sku_weight_units, total_inventory, specifications = \
            self._process_skus(skus, options)

        doc['skus'] = skus_list
        doc['specifications'] = specifications

        # 提取option值(根据配置的searchable_option_dimensions)
        self._fill_option_values(doc, skus)

        # Calculate price ranges
        if prices:
            doc['min_price'] = float(min(prices))
            doc['max_price'] = float(max(prices))
        else:
            doc['min_price'] = 0.0
            doc['max_price'] = 0.0

        if compare_prices:
            doc['compare_at_price'] = float(max(compare_prices))
        else:
            doc['compare_at_price'] = None

        # SKU扁平化字段
        doc['sku_prices'] = sku_prices
        doc['sku_weights'] = sku_weights
        doc['sku_weight_units'] = list(set(sku_weight_units))  # 去重
        doc['total_inventory'] = total_inventory

        # Time fields - convert datetime to ISO format string for ES DATE type
        if pd.notna(spu_row.get('create_time')):
            create_time = spu_row['create_time']
            if hasattr(create_time, 'isoformat'):
                doc['create_time'] = create_time.isoformat()
            else:
                doc['create_time'] = str(create_time)
        
        if pd.notna(spu_row.get('update_time')):
            update_time = spu_row['update_time']
            if hasattr(update_time, 'isoformat'):
                doc['update_time'] = update_time.isoformat()
            else:
                doc['update_time'] = str(update_time)

        return doc

    def _fill_text_fields(
        self,
        doc: Dict[str, Any],
        spu_row: pd.Series,
        primary_lang: str
    ):
        """
        填充文本字段(根据主语言自动处理多语言翻译)。
        
        翻译逻辑在translator内部处理:
        - 如果店铺语言不等于zh,自动翻译成zh
        - 如果店铺语言不等于en,自动翻译成en
        """
        # Title
        if pd.notna(spu_row.get('title')):
            title_text = str(spu_row['title'])
            
            # 使用translator的translate_for_indexing方法,自动处理多语言翻译
            if self.translator:
                # 根据目标语言选择对应的提示词
                prompt_zh = self.translation_prompts.get('product_title_zh') or self.translation_prompts.get('default_zh')
                prompt_en = self.translation_prompts.get('product_title_en') or self.translation_prompts.get('default_en')
                
                # 调用translate_for_indexing,自动处理翻译逻辑
                translations = self.translator.translate_for_indexing(
                    title_text,
                    shop_language=primary_lang,
                    source_lang=primary_lang,
                    prompt=prompt_zh if primary_lang == 'zh' else prompt_en
                )
                
                # 填充翻译结果
                doc['title_zh'] = translations.get('zh') or (title_text if primary_lang == 'zh' else None)
                doc['title_en'] = translations.get('en') or (title_text if primary_lang == 'en' else None)
            else:
                # 无翻译器,只填充主语言字段
                if primary_lang == 'zh':
                    doc['title_zh'] = title_text
                    doc['title_en'] = None
                else:
                    doc['title_zh'] = None
                    doc['title_en'] = title_text
        else:
            doc['title_zh'] = None
            doc['title_en'] = None

        # Brief
        if pd.notna(spu_row.get('brief')):
            brief_text = str(spu_row['brief'])
            if self.translator:
                prompt = self.translation_prompts.get('default_zh') or self.translation_prompts.get('default_en')
                translations = self.translator.translate_for_indexing(
                    brief_text,
                    shop_language=primary_lang,
                    source_lang=primary_lang,
                    prompt=prompt
                )
                doc['brief_zh'] = translations.get('zh') or (brief_text if primary_lang == 'zh' else None)
                doc['brief_en'] = translations.get('en') or (brief_text if primary_lang == 'en' else None)
            else:
                if primary_lang == 'zh':
                    doc['brief_zh'] = brief_text
                    doc['brief_en'] = None
                else:
                    doc['brief_zh'] = None
                    doc['brief_en'] = brief_text
        else:
            doc['brief_zh'] = None
            doc['brief_en'] = None

        # Description
        if pd.notna(spu_row.get('description')):
            desc_text = str(spu_row['description'])
            if self.translator:
                prompt = self.translation_prompts.get('default_zh') or self.translation_prompts.get('default_en')
                translations = self.translator.translate_for_indexing(
                    desc_text,
                    shop_language=primary_lang,
                    source_lang=primary_lang,
                    prompt=prompt
                )
                doc['description_zh'] = translations.get('zh') or (desc_text if primary_lang == 'zh' else None)
                doc['description_en'] = translations.get('en') or (desc_text if primary_lang == 'en' else None)
            else:
                if primary_lang == 'zh':
                    doc['description_zh'] = desc_text
                    doc['description_en'] = None
                else:
                    doc['description_zh'] = None
                    doc['description_en'] = desc_text
        else:
            doc['description_zh'] = None
            doc['description_en'] = None

        # Vendor
        if pd.notna(spu_row.get('vendor')):
            vendor_text = str(spu_row['vendor'])
            if self.translator:
                prompt = self.translation_prompts.get('default_zh') or self.translation_prompts.get('default_en')
                translations = self.translator.translate_for_indexing(
                    vendor_text,
                    shop_language=primary_lang,
                    source_lang=primary_lang,
                    prompt=prompt
                )
                doc['vendor_zh'] = translations.get('zh') or (vendor_text if primary_lang == 'zh' else None)
                doc['vendor_en'] = translations.get('en') or (vendor_text if primary_lang == 'en' else None)
            else:
                if primary_lang == 'zh':
                    doc['vendor_zh'] = vendor_text
                    doc['vendor_en'] = None
                else:
                    doc['vendor_zh'] = None
                    doc['vendor_en'] = vendor_text
        else:
            doc['vendor_zh'] = None
            doc['vendor_en'] = None

    def _fill_category_fields(self, doc: Dict[str, Any], spu_row: pd.Series):
        """填充类目相关字段。"""
        if pd.notna(spu_row.get('category_path')):
            category_path = str(spu_row['category_path'])
            
            # 解析category_path - 这是逗号分隔的类目ID列表
            category_ids = [cid.strip() for cid in category_path.split(',') if cid.strip()]
            
            # 将ID映射为名称
            category_names = []
            for cid in category_ids:
                if cid in self.category_id_to_name:
                    category_names.append(self.category_id_to_name[cid])
                else:
                    logger.error(f"Category ID {cid} not found in mapping for SPU {spu_row['id']} (title: {spu_row.get('title', 'N/A')}), category_path={category_path}")
                    category_names.append(cid)  # 使用ID作为备选
            
            # 构建类目路径字符串(用于搜索)
            if category_names:
                category_path_str = '/'.join(category_names)
                doc['category_path_zh'] = category_path_str
                doc['category_path_en'] = None  # 暂时设为空
                
                # 填充分层类目名称
                if len(category_names) > 0:
                    doc['category1_name'] = category_names[0]
                if len(category_names) > 1:
                    doc['category2_name'] = category_names[1]
                if len(category_names) > 2:
                    doc['category3_name'] = category_names[2]
        elif pd.notna(spu_row.get('category')):
            # 如果category_path为空,使用category字段作为category1_name的备选
            category = str(spu_row['category'])
            doc['category_name_zh'] = category
            doc['category_name_en'] = None
            doc['category_name'] = category
            
            # 尝试从category字段解析多级分类
            if '/' in category:
                path_parts = category.split('/')
                if len(path_parts) > 0:
                    doc['category1_name'] = path_parts[0].strip()
                if len(path_parts) > 1:
                    doc['category2_name'] = path_parts[1].strip()
                if len(path_parts) > 2:
                    doc['category3_name'] = path_parts[2].strip()
            else:
                # 如果category不包含"/",直接作为category1_name
                doc['category1_name'] = category.strip()

        if pd.notna(spu_row.get('category')):
            # 确保category相关字段都被设置(如果前面没有设置)
            category_name = str(spu_row['category'])
            if 'category_name_zh' not in doc:
                doc['category_name_zh'] = category_name
            if 'category_name_en' not in doc:
                doc['category_name_en'] = None
            if 'category_name' not in doc:
                doc['category_name'] = category_name

        if pd.notna(spu_row.get('category_id')):
            doc['category_id'] = str(int(spu_row['category_id']))

        if pd.notna(spu_row.get('category_level')):
            doc['category_level'] = int(spu_row['category_level'])

    def _fill_option_names(self, doc: Dict[str, Any], options: pd.DataFrame):
        """填充Option名称字段。"""
        if not options.empty:
            # 按position排序获取option名称
            sorted_options = options.sort_values('position')
            if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
                doc['option1_name'] = str(sorted_options.iloc[0]['name'])
            if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
                doc['option2_name'] = str(sorted_options.iloc[1]['name'])
            if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
                doc['option3_name'] = str(sorted_options.iloc[2]['name'])

    def _fill_image_url(self, doc: Dict[str, Any], spu_row: pd.Series):
        """填充图片URL字段。"""
        if pd.notna(spu_row.get('image_src')):
            image_src = str(spu_row['image_src'])
            if not image_src.startswith('http'):
                image_src = f"//{image_src}" if image_src.startswith('//') else image_src
            doc['image_url'] = image_src

    def _process_skus(
        self,
        skus: pd.DataFrame,
        options: pd.DataFrame
    ) -> tuple:
        """处理SKU数据,返回处理结果。"""
        skus_list = []
        prices = []
        compare_prices = []
        sku_prices = []
        sku_weights = []
        sku_weight_units = []
        total_inventory = 0
        specifications = []

        # 构建option名称映射(position -> name)
        option_name_map = {}
        if not options.empty:
            for _, opt_row in options.iterrows():
                position = opt_row.get('position')
                name = opt_row.get('name')
                if pd.notna(position) and pd.notna(name):
                    option_name_map[int(position)] = str(name)

        for _, sku_row in skus.iterrows():
            sku_data = self._transform_sku_row(sku_row, option_name_map)
            if sku_data:
                skus_list.append(sku_data)
                
                # 收集价格信息
                if 'price' in sku_data and sku_data['price'] is not None:
                    try:
                        price_val = float(sku_data['price'])
                        prices.append(price_val)
                        sku_prices.append(price_val)
                    except (ValueError, TypeError):
                        pass
                
                if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
                    try:
                        compare_prices.append(float(sku_data['compare_at_price']))
                    except (ValueError, TypeError):
                        pass
                
                # 收集重量信息
                if 'weight' in sku_data and sku_data['weight'] is not None:
                    try:
                        sku_weights.append(int(float(sku_data['weight'])))
                    except (ValueError, TypeError):
                        pass
                
                if 'weight_unit' in sku_data and sku_data['weight_unit']:
                    sku_weight_units.append(str(sku_data['weight_unit']))
                
                # 收集库存信息
                if 'stock' in sku_data and sku_data['stock'] is not None:
                    try:
                        total_inventory += int(sku_data['stock'])
                    except (ValueError, TypeError):
                        pass
                
                # 构建specifications(从SKU的option值和option表的name)
                sku_id = str(sku_row['id'])
                if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[1],
                        'value': str(sku_row['option1'])
                    })
                if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[2],
                        'value': str(sku_row['option2'])
                    })
                if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[3],
                        'value': str(sku_row['option3'])
                    })

        return skus_list, prices, compare_prices, sku_prices, sku_weights, sku_weight_units, total_inventory, specifications

    def _fill_option_values(self, doc: Dict[str, Any], skus: pd.DataFrame):
        """填充option值字段。"""
        option1_values = []
        option2_values = []
        option3_values = []
        
        for _, sku_row in skus.iterrows():
            if pd.notna(sku_row.get('option1')):
                option1_values.append(str(sku_row['option1']))
            if pd.notna(sku_row.get('option2')):
                option2_values.append(str(sku_row['option2']))
            if pd.notna(sku_row.get('option3')):
                option3_values.append(str(sku_row['option3']))
        
        # 去重并根据配置决定是否写入索引
        if 'option1' in self.searchable_option_dimensions:
            doc['option1_values'] = list(set(option1_values)) if option1_values else []
        else:
            doc['option1_values'] = []
        
        if 'option2' in self.searchable_option_dimensions:
            doc['option2_values'] = list(set(option2_values)) if option2_values else []
        else:
            doc['option2_values'] = []
        
        if 'option3' in self.searchable_option_dimensions:
            doc['option3_values'] = list(set(option3_values)) if option3_values else []
        else:
            doc['option3_values'] = []

    def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
        """
        将SKU行转换为SKU对象。

        Args:
            sku_row: SKU行数据
            option_name_map: position到option名称的映射

        Returns:
            SKU字典
        """
        sku_data = {}

        # SKU ID
        sku_data['sku_id'] = str(sku_row['id'])

        # Price
        if pd.notna(sku_row.get('price')):
            try:
                sku_data['price'] = float(sku_row['price'])
            except (ValueError, TypeError):
                sku_data['price'] = None
        else:
            sku_data['price'] = None

        # Compare at price
        if pd.notna(sku_row.get('compare_at_price')):
            try:
                sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
            except (ValueError, TypeError):
                sku_data['compare_at_price'] = None
        else:
            sku_data['compare_at_price'] = None

        # SKU Code
        if pd.notna(sku_row.get('sku')):
            sku_data['sku_code'] = str(sku_row['sku'])

        # Stock
        if pd.notna(sku_row.get('inventory_quantity')):
            try:
                sku_data['stock'] = int(sku_row['inventory_quantity'])
            except (ValueError, TypeError):
                sku_data['stock'] = 0
        else:
            sku_data['stock'] = 0

        # Weight
        if pd.notna(sku_row.get('weight')):
            try:
                sku_data['weight'] = float(sku_row['weight'])
            except (ValueError, TypeError):
                sku_data['weight'] = None
        else:
            sku_data['weight'] = None

        # Weight unit
        if pd.notna(sku_row.get('weight_unit')):
            sku_data['weight_unit'] = str(sku_row['weight_unit'])

        # Option values
        if pd.notna(sku_row.get('option1')):
            sku_data['option1_value'] = str(sku_row['option1'])
        if pd.notna(sku_row.get('option2')):
            sku_data['option2_value'] = str(sku_row['option2'])
        if pd.notna(sku_row.get('option3')):
            sku_data['option3_value'] = str(sku_row['option3'])
        
        # Image src
        if pd.notna(sku_row.get('image_src')):
            sku_data['image_src'] = str(sku_row['image_src'])

        return sku_data
    
    def _fill_title_embedding(self, doc: Dict[str, Any]) -> None:
        """
        填充标题向量化字段。
        
        使用英文标题(title_en)生成embedding。如果title_en不存在,则使用title_zh。
        
        Args:
            doc: ES文档字典
        """
        # 优先使用英文标题,如果没有则使用中文标题
        title_text = doc.get('title_en') or doc.get('title_zh')
        
        if not title_text or not title_text.strip():
            logger.debug(f"No title text available for embedding, SPU: {doc.get('spu_id')}")
            return
        
        try:
            # 使用BgeEncoder生成embedding
            # encode方法返回numpy数组,形状为(n, 1024)
            embeddings = self.encoder.encode(title_text)
            
            if embeddings is not None and len(embeddings) > 0:
                # 取第一个embedding(因为只传了一个文本)
                embedding = embeddings[0]
                # 转换为列表格式(ES需要)
                doc['title_embedding'] = embedding.tolist()
                logger.debug(f"Generated title_embedding for SPU: {doc.get('spu_id')}, title: {title_text[:50]}...")
            else:
                logger.warning(f"Failed to generate embedding for title: {title_text[:50]}...")
        except Exception as e:
            logger.error(f"Error generating title_embedding for SPU {doc.get('spu_id')}: {e}", exc_info=True)