spu_transformer.py
17.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
SPU data transformer for Shoplazza products.
Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
"""
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection
class SPUTransformer:
"""Transform SPU and SKU data into SPU-level ES documents."""
def __init__(
self,
db_engine: Any,
tenant_id: str
):
"""
Initialize SPU transformer.
Args:
db_engine: SQLAlchemy database engine
tenant_id: Tenant ID for filtering data
"""
self.db_engine = db_engine
self.tenant_id = tenant_id
def load_spu_data(self) -> pd.DataFrame:
"""
Load SPU data from MySQL.
Returns:
DataFrame with SPU data
"""
query = text("""
SELECT
id, shop_id, shoplazza_id, title, brief, description,
spu, vendor, vendor_url,
image_src, image_width, image_height, image_path, image_alt,
tags, note, category, category_id, category_google_id,
category_level, category_path,
tenant_id, creator, create_time, updater, update_time, deleted
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
# Debug: Check if there's any data for this tenant_id
if len(df) == 0:
debug_query = text("""
SELECT
COUNT(*) as total_count,
SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id
""")
with self.db_engine.connect() as conn:
debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
if not debug_df.empty:
total = debug_df.iloc[0]['total_count']
active = debug_df.iloc[0]['active_count']
deleted = debug_df.iloc[0]['deleted_count']
print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
# Check what tenant_ids exist in the table
tenant_check_query = text("""
SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
FROM shoplazza_product_spu
GROUP BY tenant_id
ORDER BY tenant_id
LIMIT 10
""")
with self.db_engine.connect() as conn:
tenant_df = pd.read_sql(tenant_check_query, conn)
if not tenant_df.empty:
print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
for _, row in tenant_df.iterrows():
print(f" tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
return df
def load_sku_data(self) -> pd.DataFrame:
"""
Load SKU data from MySQL.
Returns:
DataFrame with SKU data
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
shoplazza_image_id, title, sku, barcode, position,
price, compare_at_price, cost_price,
option1, option2, option3,
inventory_quantity, weight, weight_unit, image_src,
wholesale_price, note, extend,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_sku
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
return df
def load_option_data(self) -> pd.DataFrame:
"""
Load option data from MySQL.
Returns:
DataFrame with option data (name, position for each SPU)
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
position, name, `values`, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_option
WHERE tenant_id = :tenant_id AND deleted = 0
ORDER BY spu_id, position
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
return df
def transform_batch(self) -> List[Dict[str, Any]]:
"""
Transform SPU and SKU data into ES documents.
Returns:
List of SPU-level ES documents
"""
# Load data
spu_df = self.load_spu_data()
sku_df = self.load_sku_data()
option_df = self.load_option_data()
if spu_df.empty:
return []
# Group SKUs by SPU
sku_groups = sku_df.groupby('spu_id')
# Group options by SPU
option_groups = option_df.groupby('spu_id') if not option_df.empty else None
documents = []
for _, spu_row in spu_df.iterrows():
spu_id = spu_row['id']
# Get SKUs for this SPU
skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
# Get options for this SPU
options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
# Transform to ES document
doc = self._transform_spu_to_doc(spu_row, skus, options)
if doc:
documents.append(doc)
return documents
def _transform_spu_to_doc(
self,
spu_row: pd.Series,
skus: pd.DataFrame,
options: pd.DataFrame
) -> Optional[Dict[str, Any]]:
"""
Transform a single SPU row and its SKUs into an ES document.
Args:
spu_row: SPU row from database
skus: DataFrame with SKUs for this SPU
options: DataFrame with options for this SPU
Returns:
ES document or None if transformation fails
"""
doc = {}
# Tenant ID (required)
doc['tenant_id'] = str(self.tenant_id)
# SPU ID
doc['spu_id'] = str(spu_row['id'])
# 文本相关性相关字段(中英文双语,暂时只填充中文)
if pd.notna(spu_row.get('title')):
doc['title_zh'] = str(spu_row['title'])
doc['title_en'] = None # 暂时设为空
if pd.notna(spu_row.get('brief')):
doc['brief_zh'] = str(spu_row['brief'])
doc['brief_en'] = None
if pd.notna(spu_row.get('description')):
doc['description_zh'] = str(spu_row['description'])
doc['description_en'] = None
if pd.notna(spu_row.get('vendor')):
doc['vendor_zh'] = str(spu_row['vendor'])
doc['vendor_en'] = None
# Tags
if pd.notna(spu_row.get('tags')):
# Tags是逗号分隔的字符串,需要转换为数组
tags_str = str(spu_row['tags'])
doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]
# Category相关字段
if pd.notna(spu_row.get('category_path')):
category_path = str(spu_row['category_path'])
doc['category_path_zh'] = category_path
doc['category_path_en'] = None # 暂时设为空
# 解析category_path获取多层级分类名称
path_parts = category_path.split('/')
if len(path_parts) > 0:
doc['category1_name'] = path_parts[0].strip()
if len(path_parts) > 1:
doc['category2_name'] = path_parts[1].strip()
if len(path_parts) > 2:
doc['category3_name'] = path_parts[2].strip()
if pd.notna(spu_row.get('category')):
category_name = str(spu_row['category'])
doc['category_name_zh'] = category_name
doc['category_name_en'] = None
doc['category_name'] = category_name
if pd.notna(spu_row.get('category_id')):
doc['category_id'] = str(int(spu_row['category_id']))
if pd.notna(spu_row.get('category_level')):
doc['category_level'] = int(spu_row['category_level'])
# Option名称(从option表获取)
if not options.empty:
# 按position排序获取option名称
sorted_options = options.sort_values('position')
if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
doc['option1_name'] = str(sorted_options.iloc[0]['name'])
if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
doc['option2_name'] = str(sorted_options.iloc[1]['name'])
if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
doc['option3_name'] = str(sorted_options.iloc[2]['name'])
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
# Process SKUs and build specifications
skus_list = []
prices = []
compare_prices = []
sku_prices = []
sku_weights = []
sku_weight_units = []
total_inventory = 0
specifications = []
# 构建option名称映射(position -> name)
option_name_map = {}
if not options.empty:
for _, opt_row in options.iterrows():
position = opt_row.get('position')
name = opt_row.get('name')
if pd.notna(position) and pd.notna(name):
option_name_map[int(position)] = str(name)
for _, sku_row in skus.iterrows():
sku_data = self._transform_sku_row(sku_row, option_name_map)
if sku_data:
skus_list.append(sku_data)
# 收集价格信息
if 'price' in sku_data and sku_data['price'] is not None:
try:
price_val = float(sku_data['price'])
prices.append(price_val)
sku_prices.append(price_val)
except (ValueError, TypeError):
pass
if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
try:
compare_prices.append(float(sku_data['compare_at_price']))
except (ValueError, TypeError):
pass
# 收集重量信息
if 'weight' in sku_data and sku_data['weight'] is not None:
try:
sku_weights.append(int(float(sku_data['weight'])))
except (ValueError, TypeError):
pass
if 'weight_unit' in sku_data and sku_data['weight_unit']:
sku_weight_units.append(str(sku_data['weight_unit']))
# 收集库存信息
if 'stock' in sku_data and sku_data['stock'] is not None:
try:
total_inventory += int(sku_data['stock'])
except (ValueError, TypeError):
pass
# 构建specifications(从SKU的option值和option表的name)
sku_id = str(sku_row['id'])
if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[1],
'value': str(sku_row['option1'])
})
if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[2],
'value': str(sku_row['option2'])
})
if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[3],
'value': str(sku_row['option3'])
})
doc['skus'] = skus_list
doc['specifications'] = specifications
# Calculate price ranges
if prices:
doc['min_price'] = float(min(prices))
doc['max_price'] = float(max(prices))
else:
doc['min_price'] = 0.0
doc['max_price'] = 0.0
if compare_prices:
doc['compare_at_price'] = float(max(compare_prices))
else:
doc['compare_at_price'] = None
# SKU扁平化字段
doc['sku_prices'] = sku_prices
doc['sku_weights'] = sku_weights
doc['sku_weight_units'] = list(set(sku_weight_units)) # 去重
doc['total_inventory'] = total_inventory
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
# Time fields - convert datetime to ISO format string for ES DATE type
if pd.notna(spu_row.get('create_time')):
create_time = spu_row['create_time']
if hasattr(create_time, 'isoformat'):
doc['create_time'] = create_time.isoformat()
else:
doc['create_time'] = str(create_time)
if pd.notna(spu_row.get('update_time')):
update_time = spu_row['update_time']
if hasattr(update_time, 'isoformat'):
doc['update_time'] = update_time.isoformat()
else:
doc['update_time'] = str(update_time)
return doc
def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
"""
Transform a SKU row into a SKU object.
Args:
sku_row: SKU row from database
option_name_map: Mapping from position to option name
Returns:
SKU dictionary or None
"""
sku_data = {}
# SKU ID
sku_data['sku_id'] = str(sku_row['id'])
# Price
if pd.notna(sku_row.get('price')):
try:
sku_data['price'] = float(sku_row['price'])
except (ValueError, TypeError):
sku_data['price'] = None
else:
sku_data['price'] = None
# Compare at price
if pd.notna(sku_row.get('compare_at_price')):
try:
sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
except (ValueError, TypeError):
sku_data['compare_at_price'] = None
else:
sku_data['compare_at_price'] = None
# SKU Code
if pd.notna(sku_row.get('sku')):
sku_data['sku_code'] = str(sku_row['sku'])
# Stock
if pd.notna(sku_row.get('inventory_quantity')):
try:
sku_data['stock'] = int(sku_row['inventory_quantity'])
except (ValueError, TypeError):
sku_data['stock'] = 0
else:
sku_data['stock'] = 0
# Weight
if pd.notna(sku_row.get('weight')):
try:
sku_data['weight'] = float(sku_row['weight'])
except (ValueError, TypeError):
sku_data['weight'] = None
else:
sku_data['weight'] = None
# Weight unit
if pd.notna(sku_row.get('weight_unit')):
sku_data['weight_unit'] = str(sku_row['weight_unit'])
# Option values
if pd.notna(sku_row.get('option1')):
sku_data['option1_value'] = str(sku_row['option1'])
if pd.notna(sku_row.get('option2')):
sku_data['option2_value'] = str(sku_row['option2'])
if pd.notna(sku_row.get('option3')):
sku_data['option3_value'] = str(sku_row['option3'])
# Image src
if pd.notna(sku_row.get('image_src')):
sku_data['image_src'] = str(sku_row['image_src'])
return sku_data