es_query_builder.py
33.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
"""
Elasticsearch query builder.
Converts parsed queries and search parameters into ES DSL queries.
Simplified architecture:
- filters and (text_recall or embedding_recall)
- function_score wrapper for boosting fields
"""
from typing import Dict, Any, List, Optional, Union, Tuple
import numpy as np
from .boolean_parser import QueryNode
from config import FunctionScoreConfig
class ESQueryBuilder:
"""Builds Elasticsearch DSL queries."""
def __init__(
self,
index_name: str,
match_fields: List[str],
text_embedding_field: Optional[str] = None,
image_embedding_field: Optional[str] = None,
source_fields: Optional[List[str]] = None,
function_score_config: Optional[FunctionScoreConfig] = None,
enable_multilang_search: bool = True,
default_language: str = "zh"
):
"""
Initialize query builder.
Args:
index_name: ES index name
match_fields: Fields to search for text matching
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
source_fields: Fields to return in search results (_source includes)
function_score_config: Function score configuration
enable_multilang_search: Enable multi-language search using translations
default_language: Default language to use when detection fails or returns "unknown"
"""
self.index_name = index_name
self.match_fields = match_fields
self.text_embedding_field = text_embedding_field
self.image_embedding_field = image_embedding_field
self.source_fields = source_fields
self.function_score_config = function_score_config
self.enable_multilang_search = enable_multilang_search
self.default_language = default_language
def _split_filters_for_faceting(
self,
filters: Optional[Dict[str, Any]],
facet_configs: Optional[List[Any]]
) -> tuple:
"""
Split filters into conjunctive (query) and disjunctive (post_filter) based on facet configs.
Disjunctive filters (multi-select facets):
- Applied via post_filter (affects results but not aggregations)
- Allows showing other options in the same facet even when filtered
Conjunctive filters (standard facets):
- Applied in query.bool.filter (affects both results and aggregations)
- Standard drill-down behavior
Args:
filters: All filters from request
facet_configs: Facet configurations with disjunctive flags
Returns:
(conjunctive_filters, disjunctive_filters)
"""
if not filters or not facet_configs:
return filters or {}, {}
# Get fields that support multi-select
multi_select_fields = set()
for fc in facet_configs:
if getattr(fc, 'disjunctive', False):
# Handle specifications.xxx format
if fc.field.startswith('specifications.'):
multi_select_fields.add('specifications')
else:
multi_select_fields.add(fc.field)
# Split filters
conjunctive = {}
disjunctive = {}
for field, value in filters.items():
if field in multi_select_fields:
disjunctive[field] = value
else:
conjunctive[field] = value
return conjunctive, disjunctive
def build_query(
self,
query_text: str,
query_vector: Optional[np.ndarray] = None,
query_node: Optional[QueryNode] = None,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None,
facet_configs: Optional[List[Any]] = None,
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
min_score: Optional[float] = None,
parsed_query: Optional[Any] = None
) -> Dict[str, Any]:
"""
Build complete ES query with post_filter support for multi-select faceting.
结构:filters and (text_recall or embedding_recall) + post_filter
- conjunctive_filters: 应用在 query.bool.filter(影响结果和聚合)
- disjunctive_filters: 应用在 post_filter(只影响结果,不影响聚合)
- text_recall: 文本相关性召回(中英文字段都用)
- embedding_recall: 向量召回(KNN)
- function_score: 包装召回部分,支持提权字段
Args:
query_text: Query text for BM25 matching
query_vector: Query embedding for KNN search
query_node: Parsed boolean expression tree
filters: Exact match filters
range_filters: Range filters for numeric fields (always applied in query)
facet_configs: Facet configurations (used to identify multi-select facets)
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
es_query = {
"size": size,
"from": from_
}
# Add _source filtering if source_fields are configured
if self.source_fields:
es_query["_source"] = {
"includes": self.source_fields
}
# 1. Build recall queries (text or embedding)
recall_clauses = []
# Text recall (always include if query_text exists)
if query_text:
if query_node and query_node.operator != 'TERM':
# Complex boolean query
text_query = self._build_boolean_query(query_node)
else:
# Simple text query - use advanced should-based multi-query strategy
text_query = self._build_advanced_text_query(query_text, parsed_query)
recall_clauses.append(text_query)
# Embedding recall (KNN - separate from query, handled below)
has_embedding = enable_knn and query_vector is not None and self.text_embedding_field
# 2. Split filters for multi-select faceting
conjunctive_filters, disjunctive_filters = self._split_filters_for_faceting(
filters, facet_configs
)
# Build filter clauses for query (conjunctive filters + range filters)
filter_clauses = self._build_filters(conjunctive_filters, range_filters)
# 3. Build main query structure: filters and recall
if recall_clauses:
# Combine text recalls with OR logic (if multiple)
if len(recall_clauses) == 1:
recall_query = recall_clauses[0]
else:
recall_query = {
"bool": {
"should": recall_clauses,
"minimum_should_match": 1
}
}
# Wrap recall with function_score for boosting
recall_query = self._wrap_with_function_score(recall_query)
# Combine filters and recall
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [recall_query],
"filter": filter_clauses
}
}
else:
es_query["query"] = recall_query
else:
# No recall queries, only filters (match_all filtered)
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [{"match_all": {}}],
"filter": filter_clauses
}
}
else:
es_query["query"] = {"match_all": {}}
# 4. Add KNN search if enabled (separate from query, ES will combine)
if has_embedding:
knn_clause = {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
"num_candidates": knn_num_candidates,
"boost": 0.2 # Lower boost for embedding recall
}
es_query["knn"] = knn_clause
# 5. Add post_filter for disjunctive (multi-select) filters
if disjunctive_filters:
post_filter_clauses = self._build_filters(disjunctive_filters, None)
if post_filter_clauses:
if len(post_filter_clauses) == 1:
es_query["post_filter"] = post_filter_clauses[0]
else:
es_query["post_filter"] = {
"bool": {"filter": post_filter_clauses}
}
# 6. Add minimum score filter
if min_score is not None:
es_query["min_score"] = min_score
return es_query
def _wrap_with_function_score(self, query: Dict[str, Any]) -> Dict[str, Any]:
"""
Wrap query with function_score for boosting fields.
Args:
query: Base query to wrap
Returns:
Function score query or original query if no functions configured
"""
functions = self._build_score_functions()
# If no functions configured, return original query
if not functions:
return query
# Build function_score query
score_mode = self.function_score_config.score_mode if self.function_score_config else "sum"
boost_mode = self.function_score_config.boost_mode if self.function_score_config else "multiply"
function_score_query = {
"function_score": {
"query": query,
"functions": functions,
"score_mode": score_mode,
"boost_mode": boost_mode
}
}
return function_score_query
def _build_score_functions(self) -> List[Dict[str, Any]]:
"""
Build function_score functions from config.
Returns:
List of function score functions
"""
functions = []
if not self.function_score_config:
return functions
config_functions = self.function_score_config.functions or []
for func_config in config_functions:
func_type = func_config.get("type")
if func_type == "filter_weight":
# Filter + Weight
functions.append({
"filter": func_config["filter"],
"weight": func_config.get("weight", 1.0)
})
elif func_type == "field_value_factor":
# Field Value Factor
functions.append({
"field_value_factor": {
"field": func_config["field"],
"factor": func_config.get("factor", 1.0),
"modifier": func_config.get("modifier", "none"),
"missing": func_config.get("missing", 1.0)
}
})
elif func_type == "decay":
# Decay Function (gauss/exp/linear)
decay_func = func_config.get("function", "gauss")
field = func_config["field"]
decay_params = {
"origin": func_config.get("origin", "now"),
"scale": func_config["scale"]
}
if "offset" in func_config:
decay_params["offset"] = func_config["offset"]
if "decay" in func_config:
decay_params["decay"] = func_config["decay"]
functions.append({
decay_func: {
field: decay_params
}
})
return functions
def _build_text_query(self, query_text: str) -> Dict[str, Any]:
"""
Build simple text matching query (BM25).
Legacy method - kept for backward compatibility.
Args:
query_text: Query text
Returns:
ES query clause
"""
return {
"multi_match": {
"query": query_text,
"fields": self.match_fields,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": 1.0,
"_name": "base_query"
}
}
def _get_match_fields(self, language: str) -> Tuple[List[str], List[str]]:
"""
Get match fields for a specific language.
Args:
language: Language code ('zh' or 'en')
Returns:
(all_fields, core_fields) - core_fields are for phrase/keyword queries
"""
if language == 'zh':
all_fields = [
"title_zh^3.0",
"brief_zh^1.5",
"description_zh",
"vendor_zh^1.5",
"tags",
"category_path_zh^1.5",
"category_name_zh^1.5",
"option1_values^0.5"
]
core_fields = [
"title_zh^3.0",
"brief_zh^1.5",
"vendor_zh^1.5",
"category_name_zh^1.5"
]
else: # en
all_fields = [
"title_en^3.0",
"brief_en^1.5",
"description_en",
"vendor_en^1.5",
"tags",
"category_path_en^1.5",
"category_name_en^1.5",
"option1_values^0.5"
]
core_fields = [
"title_en^3.0",
"brief_en^1.5",
"vendor_en^1.5",
"category_name_en^1.5"
]
return all_fields, core_fields
def _get_embedding_field(self, language: str) -> str:
"""Get embedding field name for a language."""
# Currently using unified embedding field
return self.text_embedding_field or "title_embedding"
def _build_advanced_text_query(self, query_text: str, parsed_query: Optional[Any] = None) -> Dict[str, Any]:
"""
Build advanced text query using should clauses with multiple query strategies.
Reference implementation:
- base_query: main query with AND operator and 75% minimum_should_match
- translation queries: lower boost (0.4) for other languages
- phrase query: for short queries (2+ tokens)
- keywords query: extracted nouns from query
- KNN query: added separately in build_query
Args:
query_text: Query text
parsed_query: ParsedQuery object with analysis results
Returns:
ES bool query with should clauses
"""
should_clauses = []
# Get query analysis from parsed_query
translations = {}
language = self.default_language
keywords = ""
token_count = 0
is_short_query = False
is_long_query = False
if parsed_query:
translations = parsed_query.translations or {}
# Use default language if detected_language is None or "unknown"
detected_lang = parsed_query.detected_language
if not detected_lang or detected_lang == "unknown":
language = self.default_language
else:
language = detected_lang
keywords = getattr(parsed_query, 'keywords', '') or ""
token_count = getattr(parsed_query, 'token_count', 0) or 0
is_short_query = getattr(parsed_query, 'is_short_query', False)
is_long_query = getattr(parsed_query, 'is_long_query', False)
# Get match fields for the detected language
match_fields, core_fields = self._get_match_fields(language)
# Tie breaker values
tie_breaker_base_query = 0.9
tie_breaker_long_query = 0.9
tie_breaker_keywords = 0.9
# 1. Base query - main query with AND operator
should_clauses.append({
"multi_match": {
"_name": "base_query",
"fields": match_fields,
"minimum_should_match": "75%",
"operator": "AND",
"query": query_text,
"tie_breaker": tie_breaker_base_query
}
})
# 2. Translation queries - lower boost (0.4) for other languages
if self.enable_multilang_search:
if language != 'zh' and translations.get('zh'):
zh_fields, _ = self._get_match_fields('zh')
should_clauses.append({
"multi_match": {
"query": translations['zh'],
"fields": zh_fields,
"operator": "AND",
"minimum_should_match": "75%",
"tie_breaker": tie_breaker_base_query,
"boost": 0.4,
"_name": "base_query_trans_zh"
}
})
if language != 'en' and translations.get('en'):
en_fields, _ = self._get_match_fields('en')
should_clauses.append({
"multi_match": {
"query": translations['en'],
"fields": en_fields,
"operator": "AND",
"minimum_should_match": "75%",
"tie_breaker": tie_breaker_base_query,
"boost": 0.4,
"_name": "base_query_trans_en"
}
})
# 3. Long query - add a query with lower minimum_should_match
# Currently disabled (False condition in reference)
if False and is_long_query:
boost = 0.5 * pow(min(1.0, token_count / 10.0), 0.9)
minimum_should_match = "70%"
should_clauses.append({
"multi_match": {
"query": query_text,
"fields": match_fields,
"minimum_should_match": minimum_should_match,
"boost": boost,
"tie_breaker": tie_breaker_long_query,
"_name": "long_query"
}
})
# 4. Short query - add phrase query
ENABLE_PHRASE_QUERY = True
if ENABLE_PHRASE_QUERY and token_count >= 2 and is_short_query:
query_length = len(query_text)
slop = 0 if query_length < 3 else 1 if query_length < 5 else 2
should_clauses.append({
"multi_match": {
"query": query_text,
"fields": core_fields,
"type": "phrase",
"slop": slop,
"boost": 1.0,
"_name": "phrase_query"
}
})
# 5. Keywords query - extracted nouns from query
elif keywords and len(keywords.split()) <= 2 and 2 * len(keywords.replace(' ', '')) <= len(query_text):
should_clauses.append({
"multi_match": {
"query": keywords,
"fields": core_fields,
"operator": "AND",
"tie_breaker": tie_breaker_keywords,
"boost": 0.1,
"_name": "keywords_query"
}
})
# Return bool query with should clauses
if len(should_clauses) == 1:
return should_clauses[0]
return {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
}
def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
"""
Build query from boolean expression tree.
Args:
node: Query tree node
Returns:
ES query clause
"""
if node.operator == 'TERM':
# Leaf node - simple text query
return self._build_text_query(node.value)
elif node.operator == 'AND':
# All terms must match
return {
"bool": {
"must": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
elif node.operator == 'OR':
# Any term must match
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
],
"minimum_should_match": 1
}
}
elif node.operator == 'ANDNOT':
# First term must match, second must not
if len(node.terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query(node.terms[0])],
"must_not": [self._build_boolean_query(node.terms[1])]
}
}
else:
return self._build_boolean_query(node.terms[0])
elif node.operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
else:
# Unknown operator
return {"match_all": {}}
def _build_filters(
self,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, 'RangeFilter']] = None
) -> List[Dict[str, Any]]:
"""
构建过滤子句。
Args:
filters: 精确匹配过滤器字典
range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
Returns:
ES filter 子句列表
"""
filter_clauses = []
# 1. 处理精确匹配过滤
if filters:
for field, value in filters.items():
# 特殊处理:specifications 嵌套过滤
if field == "specifications":
if isinstance(value, dict):
# 单个规格过滤:{"name": "color", "value": "green"}
name = value.get("name")
spec_value = value.get("value")
if name and spec_value:
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": spec_value}}
]
}
}
}
})
elif isinstance(value, list):
# 多个规格过滤:按 name 分组,相同维度 OR,不同维度 AND
# 例如:[{"name": "size", "value": "3"}, {"name": "size", "value": "4"}, {"name": "color", "value": "green"}]
# 应该生成:(size=3 OR size=4) AND color=green
from collections import defaultdict
specs_by_name = defaultdict(list)
for spec in value:
if isinstance(spec, dict):
name = spec.get("name")
spec_value = spec.get("value")
if name and spec_value:
specs_by_name[name].append(spec_value)
# 为每个 name 维度生成一个过滤子句
for name, values in specs_by_name.items():
if len(values) == 1:
# 单个值,直接生成 term 查询
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": values[0]}}
]
}
}
}
})
else:
# 多个值,使用 should (OR) 连接
should_clauses = []
for spec_value in values:
should_clauses.append({
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": spec_value}}
]
}
})
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
}
}
})
continue
# 普通字段过滤
if isinstance(value, list):
# 多值匹配(OR)
filter_clauses.append({
"terms": {field: value}
})
else:
# 单值精确匹配
filter_clauses.append({
"term": {field: value}
})
# 2. 处理范围过滤(支持 RangeFilter Pydantic 模型或字典)
if range_filters:
for field, range_filter in range_filters.items():
# 支持 Pydantic 模型或字典格式
if hasattr(range_filter, 'model_dump'):
# Pydantic 模型
range_dict = range_filter.model_dump(exclude_none=True)
elif isinstance(range_filter, dict):
# 已经是字典格式
range_dict = {k: v for k, v in range_filter.items() if v is not None}
else:
# 其他格式,跳过
continue
if range_dict:
filter_clauses.append({
"range": {field: range_dict}
})
return filter_clauses
def add_spu_collapse(
self,
es_query: Dict[str, Any],
spu_field: str,
inner_hits_size: int = 3
) -> Dict[str, Any]:
"""
Add SPU aggregation/collapse to query.
Args:
es_query: Existing ES query
spu_field: Field containing SPU ID
inner_hits_size: Number of SKUs to return per SPU
Returns:
Modified ES query
"""
# Add collapse
es_query["collapse"] = {
"field": spu_field,
"inner_hits": {
"_source": False,
"name": "top_docs",
"size": inner_hits_size
}
}
# Add cardinality aggregation to count unique SPUs
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"]["unique_count"] = {
"cardinality": {
"field": spu_field
}
}
return es_query
def add_sorting(
self,
es_query: Dict[str, Any],
sort_by: str,
sort_order: str = "desc"
) -> Dict[str, Any]:
"""
Add sorting to ES query.
Args:
es_query: Existing ES query
sort_by: Field name for sorting (支持 'price' 自动映射)
sort_order: Sort order: 'asc' or 'desc'
Returns:
Modified ES query
"""
if not sort_by:
return es_query
if not sort_order:
sort_order = "desc"
# Auto-map 'price' to 'min_price' or 'max_price' based on sort_order
if sort_by == "price":
if sort_order.lower() == "asc":
sort_by = "min_price" # 价格从低到高
else:
sort_by = "max_price" # 价格从高到低
if "sort" not in es_query:
es_query["sort"] = []
# Add the specified sort
sort_field = {
sort_by: {
"order": sort_order.lower()
}
}
es_query["sort"].append(sort_field)
return es_query
def build_facets(
self,
facet_configs: Optional[List['FacetConfig']] = None
) -> Dict[str, Any]:
"""
构建分面聚合。
Args:
facet_configs: 分面配置对象列表
支持的字段类型:
- 普通字段: 如 "category1_name"(terms 或 range 类型)
- specifications: "specifications"(返回所有规格名称及其值)
- specifications.{name}: 如 "specifications.color"(返回指定规格名称的值)
Returns:
ES aggregations 字典
"""
if not facet_configs:
return {}
aggs = {}
for config in facet_configs:
field = config.field
size = config.size
facet_type = config.type
# 处理 specifications(所有规格名称)
if field == "specifications":
aggs["specifications_facet"] = {
"nested": {"path": "specifications"},
"aggs": {
"by_name": {
"terms": {
"field": "specifications.name",
"size": 20,
"order": {"_count": "desc"}
},
"aggs": {
"value_counts": {
"terms": {
"field": "specifications.value",
"size": size,
"order": {"_count": "desc"}
}
}
}
}
}
}
continue
# 处理 specifications.{name}(指定规格名称)
if field.startswith("specifications."):
name = field[len("specifications."):]
agg_name = f"specifications_{name}_facet"
aggs[agg_name] = {
"nested": {"path": "specifications"},
"aggs": {
"filter_by_name": {
"filter": {"term": {"specifications.name": name}},
"aggs": {
"value_counts": {
"terms": {
"field": "specifications.value",
"size": size,
"order": {"_count": "desc"}
}
}
}
}
}
}
continue
# 处理普通字段
agg_name = f"{field}_facet"
if facet_type == 'terms':
aggs[agg_name] = {
"terms": {
"field": field,
"size": size,
"order": {"_count": "desc"}
}
}
elif facet_type == 'range':
if config.ranges:
aggs[agg_name] = {
"range": {
"field": field,
"ranges": config.ranges
}
}
return aggs