es_query_builder.py
11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Elasticsearch query builder.
Converts parsed queries and search parameters into ES DSL queries.
"""
from typing import Dict, Any, List, Optional
import numpy as np
from .boolean_parser import QueryNode
class ESQueryBuilder:
"""Builds Elasticsearch DSL queries."""
def __init__(
self,
index_name: str,
match_fields: List[str],
text_embedding_field: Optional[str] = None,
image_embedding_field: Optional[str] = None
):
"""
Initialize query builder.
Args:
index_name: ES index name
match_fields: Fields to search for text matching
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
"""
self.index_name = index_name
self.match_fields = match_fields
self.text_embedding_field = text_embedding_field
self.image_embedding_field = image_embedding_field
def build_query(
self,
query_text: str,
query_vector: Optional[np.ndarray] = None,
query_node: Optional[QueryNode] = None,
filters: Optional[Dict[str, Any]] = None,
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
min_score: Optional[float] = None
) -> Dict[str, Any]:
"""
Build complete ES query.
Args:
query_text: Query text for BM25 matching
query_vector: Query embedding for KNN search
query_node: Parsed boolean expression tree
filters: Additional filters (term, range, etc.)
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
es_query = {
"size": size,
"from": from_
}
# Build main query
if query_node and query_node.operator != 'TERM':
# Complex boolean query
query_clause = self._build_boolean_query(query_node)
else:
# Simple text query
query_clause = self._build_text_query(query_text)
# Add filters if provided
if filters:
es_query["query"] = {
"bool": {
"must": [query_clause],
"filter": self._build_filters(filters)
}
}
else:
es_query["query"] = query_clause
# Add KNN search if enabled and vector provided
if enable_knn and query_vector is not None and self.text_embedding_field:
knn_clause = {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
"num_candidates": knn_num_candidates
}
es_query["knn"] = knn_clause
# Add minimum score filter
if min_score is not None:
es_query["min_score"] = min_score
return es_query
def _build_text_query(self, query_text: str) -> Dict[str, Any]:
"""
Build simple text matching query (BM25).
Args:
query_text: Query text
Returns:
ES query clause
"""
return {
"multi_match": {
"query": query_text,
"fields": self.match_fields,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": 1.0,
"_name": "base_query"
}
}
def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
"""
Build query from boolean expression tree.
Args:
node: Query tree node
Returns:
ES query clause
"""
if node.operator == 'TERM':
# Leaf node - simple text query
return self._build_text_query(node.value)
elif node.operator == 'AND':
# All terms must match
return {
"bool": {
"must": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
elif node.operator == 'OR':
# Any term must match
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
],
"minimum_should_match": 1
}
}
elif node.operator == 'ANDNOT':
# First term must match, second must not
if len(node.terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query(node.terms[0])],
"must_not": [self._build_boolean_query(node.terms[1])]
}
}
else:
return self._build_boolean_query(node.terms[0])
elif node.operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
else:
# Unknown operator
return {"match_all": {}}
def _build_filters(self, filters: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Build filter clauses.
Args:
filters: Filter specifications
Returns:
List of ES filter clauses
"""
filter_clauses = []
for field, value in filters.items():
if field == 'price_ranges':
# Handle price range filters
if isinstance(value, list):
price_ranges = []
for price_range in value:
if price_range == '0-50':
price_ranges.append({"lt": 50})
elif price_range == '50-100':
price_ranges.append({"gte": 50, "lt": 100})
elif price_range == '100-200':
price_ranges.append({"gte": 100, "lt": 200})
elif price_range == '200+':
price_ranges.append({"gte": 200})
if price_ranges:
if len(price_ranges) == 1:
filter_clauses.append({
"range": {
"price": price_ranges[0]
}
})
else:
# Multiple price ranges - use bool should clause
range_clauses = [{"range": {"price": pr}} for pr in price_ranges]
filter_clauses.append({
"bool": {
"should": range_clauses
}
})
elif isinstance(value, dict):
# Range query
if "gte" in value or "lte" in value or "gt" in value or "lt" in value:
filter_clauses.append({
"range": {
field: value
}
})
elif isinstance(value, list):
# Terms query (match any)
filter_clauses.append({
"terms": {
field: value
}
})
else:
# Term query (exact match)
filter_clauses.append({
"term": {
field: value
}
})
return filter_clauses
def add_spu_collapse(
self,
es_query: Dict[str, Any],
spu_field: str,
inner_hits_size: int = 3
) -> Dict[str, Any]:
"""
Add SPU aggregation/collapse to query.
Args:
es_query: Existing ES query
spu_field: Field containing SPU ID
inner_hits_size: Number of SKUs to return per SPU
Returns:
Modified ES query
"""
# Add collapse
es_query["collapse"] = {
"field": spu_field,
"inner_hits": {
"_source": False,
"name": "top_docs",
"size": inner_hits_size
}
}
# Add cardinality aggregation to count unique SPUs
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"]["unique_count"] = {
"cardinality": {
"field": spu_field
}
}
return es_query
def add_dynamic_aggregations(
self,
es_query: Dict[str, Any],
aggregations: Dict[str, Any]
) -> Dict[str, Any]:
"""
Add dynamic aggregations based on request parameters.
Args:
es_query: Existing ES query
aggregations: Aggregation specifications
Returns:
Modified ES query
"""
if "aggs" not in es_query:
es_query["aggs"] = {}
for agg_name, agg_spec in aggregations.items():
es_query["aggs"][agg_name] = agg_spec
return es_query
def add_sorting(
self,
es_query: Dict[str, Any],
sort_by: str,
sort_order: str = "desc"
) -> Dict[str, Any]:
"""
Add sorting to ES query.
Args:
es_query: Existing ES query
sort_by: Field name for sorting
sort_order: Sort order: 'asc' or 'desc'
Returns:
Modified ES query
"""
if not sort_by:
return es_query
if not sort_order:
sort_order = "desc"
if "sort" not in es_query:
es_query["sort"] = []
# Add the specified sort
sort_field = {
sort_by: {
"order": sort_order.lower()
}
}
es_query["sort"].append(sort_field)
return es_query
def add_aggregations(
self,
es_query: Dict[str, Any],
agg_fields: List[str]
) -> Dict[str, Any]:
"""
Add aggregations for faceted search.
Args:
es_query: Existing ES query
agg_fields: Fields to aggregate on
Returns:
Modified ES query
"""
if "aggs" not in es_query:
es_query["aggs"] = {}
for field in agg_fields:
es_query["aggs"][f"{field}_agg"] = {
"terms": {
"field": f"{field}",
"size": 20
}
}
return es_query