es_query_builder.py
11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
Elasticsearch query builder.
Converts parsed queries and search parameters into ES DSL queries.
"""
from typing import Dict, Any, List, Optional, Union
import numpy as np
from .boolean_parser import QueryNode
class ESQueryBuilder:
"""Builds Elasticsearch DSL queries."""
def __init__(
self,
index_name: str,
match_fields: List[str],
text_embedding_field: Optional[str] = None,
image_embedding_field: Optional[str] = None
):
"""
Initialize query builder.
Args:
index_name: ES index name
match_fields: Fields to search for text matching
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
"""
self.index_name = index_name
self.match_fields = match_fields
self.text_embedding_field = text_embedding_field
self.image_embedding_field = image_embedding_field
def build_query(
self,
query_text: str,
query_vector: Optional[np.ndarray] = None,
query_node: Optional[QueryNode] = None,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None,
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
min_score: Optional[float] = None
) -> Dict[str, Any]:
"""
Build complete ES query (重构版).
Args:
query_text: Query text for BM25 matching
query_vector: Query embedding for KNN search
query_node: Parsed boolean expression tree
filters: Exact match filters
range_filters: Range filters for numeric fields
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
es_query = {
"size": size,
"from": from_
}
# Build main query
if query_node and query_node.operator != 'TERM':
# Complex boolean query
query_clause = self._build_boolean_query(query_node)
else:
# Simple text query
query_clause = self._build_text_query(query_text)
# Add filters if provided
if filters or range_filters:
filter_clauses = self._build_filters(filters, range_filters)
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [query_clause],
"filter": filter_clauses
}
}
else:
es_query["query"] = query_clause
else:
es_query["query"] = query_clause
# Add KNN search if enabled and vector provided
if enable_knn and query_vector is not None and self.text_embedding_field:
knn_clause = {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
"num_candidates": knn_num_candidates
}
es_query["knn"] = knn_clause
# Add minimum score filter
if min_score is not None:
es_query["min_score"] = min_score
return es_query
def _build_text_query(self, query_text: str) -> Dict[str, Any]:
"""
Build simple text matching query (BM25).
Args:
query_text: Query text
Returns:
ES query clause
"""
return {
"multi_match": {
"query": query_text,
"fields": self.match_fields,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": 1.0,
"_name": "base_query"
}
}
def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
"""
Build query from boolean expression tree.
Args:
node: Query tree node
Returns:
ES query clause
"""
if node.operator == 'TERM':
# Leaf node - simple text query
return self._build_text_query(node.value)
elif node.operator == 'AND':
# All terms must match
return {
"bool": {
"must": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
elif node.operator == 'OR':
# Any term must match
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
],
"minimum_should_match": 1
}
}
elif node.operator == 'ANDNOT':
# First term must match, second must not
if len(node.terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query(node.terms[0])],
"must_not": [self._build_boolean_query(node.terms[1])]
}
}
else:
return self._build_boolean_query(node.terms[0])
elif node.operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
else:
# Unknown operator
return {"match_all": {}}
def _build_filters(
self,
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, 'RangeFilter']] = None
) -> List[Dict[str, Any]]:
"""
构建过滤子句。
Args:
filters: 精确匹配过滤器字典
range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
Returns:
ES filter 子句列表
"""
filter_clauses = []
# 1. 处理精确匹配过滤
if filters:
for field, value in filters.items():
if isinstance(value, list):
# 多值匹配(OR)
filter_clauses.append({
"terms": {field: value}
})
else:
# 单值精确匹配
filter_clauses.append({
"term": {field: value}
})
# 2. 处理范围过滤(RangeFilter Pydantic 模型)
if range_filters:
for field, range_filter in range_filters.items():
# 将 RangeFilter 模型转换为字典
range_dict = range_filter.model_dump(exclude_none=True)
if range_dict:
filter_clauses.append({
"range": {field: range_dict}
})
return filter_clauses
def add_spu_collapse(
self,
es_query: Dict[str, Any],
spu_field: str,
inner_hits_size: int = 3
) -> Dict[str, Any]:
"""
Add SPU aggregation/collapse to query.
Args:
es_query: Existing ES query
spu_field: Field containing SPU ID
inner_hits_size: Number of SKUs to return per SPU
Returns:
Modified ES query
"""
# Add collapse
es_query["collapse"] = {
"field": spu_field,
"inner_hits": {
"_source": False,
"name": "top_docs",
"size": inner_hits_size
}
}
# Add cardinality aggregation to count unique SPUs
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"]["unique_count"] = {
"cardinality": {
"field": spu_field
}
}
return es_query
def add_sorting(
self,
es_query: Dict[str, Any],
sort_by: str,
sort_order: str = "desc"
) -> Dict[str, Any]:
"""
Add sorting to ES query.
Args:
es_query: Existing ES query
sort_by: Field name for sorting
sort_order: Sort order: 'asc' or 'desc'
Returns:
Modified ES query
"""
if not sort_by:
return es_query
if not sort_order:
sort_order = "desc"
if "sort" not in es_query:
es_query["sort"] = []
# Add the specified sort
sort_field = {
sort_by: {
"order": sort_order.lower()
}
}
es_query["sort"].append(sort_field)
return es_query
def build_facets(
self,
facet_configs: Optional[List[Union[str, 'FacetConfig']]] = None
) -> Dict[str, Any]:
"""
构建分面聚合。
Args:
facet_configs: 分面配置列表(标准格式):
- str: 字段名,使用默认 terms 配置
- FacetConfig: 详细的分面配置对象
Returns:
ES aggregations 字典
"""
if not facet_configs:
return {}
aggs = {}
for config in facet_configs:
# 简单模式:只有字段名(字符串)
if isinstance(config, str):
field = config
agg_name = f"{field}_facet"
aggs[agg_name] = {
"terms": {
"field": field,
"size": 10,
"order": {"_count": "desc"}
}
}
# 高级模式:FacetConfig 对象
else:
# 此时 config 应该是 FacetConfig 对象
field = config.field
facet_type = config.type
size = config.size
agg_name = f"{field}_facet"
if facet_type == 'terms':
aggs[agg_name] = {
"terms": {
"field": field,
"size": size,
"order": {"_count": "desc"}
}
}
elif facet_type == 'range':
if config.ranges:
aggs[agg_name] = {
"range": {
"field": field,
"ranges": config.ranges
}
}
return aggs