spu_transformer.py
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
SPU data transformer for Shoplazza products.
Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested variants.
"""
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection
class SPUTransformer:
"""Transform SPU and SKU data into SPU-level ES documents."""
def __init__(
self,
db_engine: Any,
tenant_id: str
):
"""
Initialize SPU transformer.
Args:
db_engine: SQLAlchemy database engine
tenant_id: Tenant ID for filtering data
"""
self.db_engine = db_engine
self.tenant_id = tenant_id
def load_spu_data(self) -> pd.DataFrame:
"""
Load SPU data from MySQL.
Returns:
DataFrame with SPU data
"""
query = text("""
SELECT
id, shop_id, shoplazza_id, handle, title, brief, description,
spu, vendor, vendor_url, seo_title, seo_description, seo_keywords,
image_src, image_width, image_height, image_path, image_alt,
tags, note, category,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
# Debug: Check if there's any data for this tenant_id
if len(df) == 0:
debug_query = text("""
SELECT
COUNT(*) as total_count,
SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id
""")
with self.db_engine.connect() as conn:
debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
if not debug_df.empty:
total = debug_df.iloc[0]['total_count']
active = debug_df.iloc[0]['active_count']
deleted = debug_df.iloc[0]['deleted_count']
print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
# Check what tenant_ids exist in the table
tenant_check_query = text("""
SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
FROM shoplazza_product_spu
GROUP BY tenant_id
ORDER BY tenant_id
LIMIT 10
""")
with self.db_engine.connect() as conn:
tenant_df = pd.read_sql(tenant_check_query, conn)
if not tenant_df.empty:
print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
for _, row in tenant_df.iterrows():
print(f" tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
return df
def load_sku_data(self) -> pd.DataFrame:
"""
Load SKU data from MySQL.
Returns:
DataFrame with SKU data
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
shoplazza_image_id, title, sku, barcode, position,
price, compare_at_price, cost_price,
option1, option2, option3,
inventory_quantity, weight, weight_unit, image_src,
wholesale_price, note, extend,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_sku
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
return df
def transform_batch(self) -> List[Dict[str, Any]]:
"""
Transform SPU and SKU data into ES documents.
Returns:
List of SPU-level ES documents
"""
# Load data
spu_df = self.load_spu_data()
sku_df = self.load_sku_data()
if spu_df.empty:
return []
# Group SKUs by SPU
sku_groups = sku_df.groupby('spu_id')
documents = []
for _, spu_row in spu_df.iterrows():
spu_id = spu_row['id']
# Get SKUs for this SPU
skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
# Transform to ES document
doc = self._transform_spu_to_doc(spu_row, skus)
if doc:
documents.append(doc)
return documents
def _transform_spu_to_doc(
self,
spu_row: pd.Series,
skus: pd.DataFrame
) -> Optional[Dict[str, Any]]:
"""
Transform a single SPU row and its SKUs into an ES document.
Args:
spu_row: SPU row from database
skus: DataFrame with SKUs for this SPU
Returns:
ES document or None if transformation fails
"""
doc = {}
# Tenant ID (required)
doc['tenant_id'] = str(self.tenant_id)
# Product ID
doc['product_id'] = str(spu_row['id'])
# Handle
if pd.notna(spu_row.get('handle')):
doc['handle'] = str(spu_row['handle'])
# Title
if pd.notna(spu_row.get('title')):
doc['title'] = str(spu_row['title'])
# Brief
if pd.notna(spu_row.get('brief')):
doc['brief'] = str(spu_row['brief'])
# Description
if pd.notna(spu_row.get('description')):
doc['description'] = str(spu_row['description'])
# SEO fields
if pd.notna(spu_row.get('seo_title')):
doc['seo_title'] = str(spu_row['seo_title'])
if pd.notna(spu_row.get('seo_description')):
doc['seo_description'] = str(spu_row['seo_description'])
if pd.notna(spu_row.get('seo_keywords')):
doc['seo_keywords'] = str(spu_row['seo_keywords'])
# Vendor
if pd.notna(spu_row.get('vendor')):
doc['vendor'] = str(spu_row['vendor'])
doc['vendor_keyword'] = str(spu_row['vendor'])
# Product type (from category or tags)
if pd.notna(spu_row.get('category')):
doc['product_type'] = str(spu_row['category'])
doc['product_type_keyword'] = str(spu_row['category'])
# Tags
if pd.notna(spu_row.get('tags')):
tags_str = str(spu_row['tags'])
doc['tags'] = tags_str
doc['tags_keyword'] = tags_str
# Category
if pd.notna(spu_row.get('category')):
doc['category'] = str(spu_row['category'])
doc['category_keyword'] = str(spu_row['category'])
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
# Process variants
variants = []
prices = []
compare_prices = []
for _, sku_row in skus.iterrows():
variant = self._transform_sku_to_variant(sku_row)
if variant:
variants.append(variant)
if 'price' in variant and variant['price'] is not None:
try:
prices.append(float(variant['price']))
except (ValueError, TypeError):
pass
if 'compare_at_price' in variant and variant['compare_at_price'] is not None:
try:
compare_prices.append(float(variant['compare_at_price']))
except (ValueError, TypeError):
pass
doc['variants'] = variants
# Calculate price ranges
if prices:
doc['min_price'] = float(min(prices))
doc['max_price'] = float(max(prices))
else:
doc['min_price'] = 0.0
doc['max_price'] = 0.0
if compare_prices:
doc['compare_at_price'] = float(max(compare_prices))
else:
doc['compare_at_price'] = None
return doc
def _transform_sku_to_variant(self, sku_row: pd.Series) -> Optional[Dict[str, Any]]:
"""
Transform a SKU row into a variant object.
Args:
sku_row: SKU row from database
Returns:
Variant dictionary or None
"""
variant = {}
# Variant ID
variant['variant_id'] = str(sku_row['id'])
# Title
if pd.notna(sku_row.get('title')):
variant['title'] = str(sku_row['title'])
# Price
if pd.notna(sku_row.get('price')):
try:
variant['price'] = float(sku_row['price'])
except (ValueError, TypeError):
variant['price'] = None
else:
variant['price'] = None
# Compare at price
if pd.notna(sku_row.get('compare_at_price')):
try:
variant['compare_at_price'] = float(sku_row['compare_at_price'])
except (ValueError, TypeError):
variant['compare_at_price'] = None
else:
variant['compare_at_price'] = None
# SKU
if pd.notna(sku_row.get('sku')):
variant['sku'] = str(sku_row['sku'])
# Stock
if pd.notna(sku_row.get('inventory_quantity')):
try:
variant['stock'] = int(sku_row['inventory_quantity'])
except (ValueError, TypeError):
variant['stock'] = 0
else:
variant['stock'] = 0
# Options (from option1, option2, option3)
options = {}
if pd.notna(sku_row.get('option1')):
options['option1'] = str(sku_row['option1'])
if pd.notna(sku_row.get('option2')):
options['option2'] = str(sku_row['option2'])
if pd.notna(sku_row.get('option3')):
options['option3'] = str(sku_row['option3'])
if options:
variant['options'] = options
return variant