result_formatter.py
17.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
Result formatter for converting ES internal format to external-friendly format.
"""
from typing import List, Dict, Any, Optional
from .models import SpuResult, SkuResult, FacetResult, FacetValue
class ResultFormatter:
"""Formats ES search results to external-friendly format."""
@staticmethod
def format_search_results(
es_hits: List[Dict[str, Any]],
max_score: float = 1.0,
language: str = "zh",
sku_filter_dimension: Optional[List[str]] = None
) -> List[SpuResult]:
"""
Convert ES hits to SpuResult list.
Args:
es_hits: List of ES hit dictionaries (with _id, _score, _source)
max_score: Maximum score (unused, kept for compatibility)
Returns:
List of SpuResult objects
"""
results = []
lang = (language or "zh").lower()
if lang not in ("zh", "en"):
lang = "en"
def pick_lang_field(src: Dict[str, Any], base: str) -> Optional[str]:
"""从 *_zh / *_en 字段中按语言选择一个值,若目标语言缺失则回退到另一种。"""
zh_val = src.get(f"{base}_zh")
en_val = src.get(f"{base}_en")
if lang == "zh":
return zh_val or en_val
else:
return en_val or zh_val
for hit in es_hits:
source = hit.get('_source', {})
score = hit.get('_score')
# Use original ES score directly (no normalization)
# Handle None score (can happen with certain query types or when score is explicitly null)
if score is None:
relevance_score = 0.0
else:
try:
relevance_score = float(score)
except (ValueError, TypeError):
relevance_score = 0.0
# Multi-language fields
title = pick_lang_field(source, "title")
brief = pick_lang_field(source, "brief")
description = pick_lang_field(source, "description")
vendor = pick_lang_field(source, "vendor")
category_path = pick_lang_field(source, "category_path")
category_name = pick_lang_field(source, "category_name")
# Extract SKUs
skus = []
skus_data = source.get('skus', [])
if isinstance(skus_data, list):
for sku_entry in skus_data:
sku = SkuResult(
sku_id=str(sku_entry.get('sku_id', '')),
title=sku_entry.get('title'),
price=sku_entry.get('price'),
compare_at_price=sku_entry.get('compare_at_price'),
sku=sku_entry.get('sku'),
sku_code=sku_entry.get('sku_code'),
stock=sku_entry.get('stock', 0),
weight=sku_entry.get('weight'),
weight_unit=sku_entry.get('weight_unit'),
option1_value=sku_entry.get('option1_value'),
option2_value=sku_entry.get('option2_value'),
option3_value=sku_entry.get('option3_value'),
image_src=sku_entry.get('image_src'),
options=sku_entry.get('options')
)
skus.append(sku)
# Apply SKU filtering if dimension list is specified
if sku_filter_dimension and skus:
skus = ResultFormatter._filter_skus_by_dimensions(
skus,
sku_filter_dimension,
source.get('option1_name'),
source.get('option2_name'),
source.get('option3_name'),
source.get('specifications', [])
)
# Determine in_stock (any sku has stock > 0)
in_stock = any(sku.stock > 0 for sku in skus) if skus else True
# Build SpuResult
spu = SpuResult(
spu_id=str(source.get('spu_id', '')),
title=title,
brief=brief,
handle=source.get('handle'),
description=description,
vendor=vendor,
category=category_name,
category_path=category_path,
category_name=category_name,
category_id=source.get('category_id'),
category_level=source.get('category_level'),
category1_name=source.get('category1_name'),
category2_name=source.get('category2_name'),
category3_name=source.get('category3_name'),
tags=source.get('tags'),
price=source.get('min_price'),
compare_at_price=source.get('compare_at_price'),
currency="USD", # Default currency
image_url=source.get('image_url'),
in_stock=in_stock,
sku_prices=source.get('sku_prices'),
sku_weights=source.get('sku_weights'),
sku_weight_units=source.get('sku_weight_units'),
total_inventory=source.get('total_inventory'),
option1_name=source.get('option1_name'),
option2_name=source.get('option2_name'),
option3_name=source.get('option3_name'),
specifications=source.get('specifications'),
skus=skus,
relevance_score=relevance_score
)
results.append(spu)
return results
@staticmethod
def _filter_skus_by_dimensions(
skus: List[SkuResult],
dimensions: List[str],
option1_name: Optional[str] = None,
option2_name: Optional[str] = None,
option3_name: Optional[str] = None,
specifications: Optional[List[Dict[str, Any]]] = None
) -> List[SkuResult]:
"""
Filter SKUs by one or more dimensions, keeping only one SKU per dimension value combination.
Args:
skus: List of SKU results to filter
dimensions: Filter dimensions, each dimension can be:
- 'option1', 'option2', 'option3': Direct option field
- A specification/option name (e.g., 'color', 'size'): Match by option name
option1_name: Name of option1 (e.g., 'color')
option2_name: Name of option2 (e.g., 'size')
option3_name: Name of option3
specifications: List of specifications (for reference)
Returns:
Filtered list of SKUs (one per dimension value)
"""
if not skus or not dimensions:
return skus
# Resolve each dimension to an underlying SKU field (option1_value / option2_value / option3_value)
filter_fields: List[str] = []
for dim in dimensions:
if not dim:
continue
dim_lower = dim.lower()
field_name: Optional[str] = None
# Direct option field (option1, option2, option3)
if dim_lower == 'option1':
field_name = 'option1_value'
elif dim_lower == 'option2':
field_name = 'option2_value'
elif dim_lower == 'option3':
field_name = 'option3_value'
else:
# Try to match by option name
if option1_name and option1_name.lower() == dim_lower:
field_name = 'option1_value'
elif option2_name and option2_name.lower() == dim_lower:
field_name = 'option2_value'
elif option3_name and option3_name.lower() == dim_lower:
field_name = 'option3_value'
if field_name and field_name not in filter_fields:
filter_fields.append(field_name)
# If no matching field found for all dimensions, do not return any child SKUs
if not filter_fields:
return []
# Group SKUs by dimension value combination and select first one from each group
dimension_groups: Dict[tuple, SkuResult] = {}
for sku in skus:
# Build key as combination of all dimension values
key_values: List[str] = []
for field in filter_fields:
dimension_value = getattr(sku, field, None)
# Use empty string as key part for None values
key_values.append(str(dimension_value) if dimension_value is not None else '')
key = tuple(key_values)
# Keep first SKU for each dimension combination
if key not in dimension_groups:
dimension_groups[key] = sku
# Return filtered SKUs (one per dimension combination)
return list(dimension_groups.values())
@staticmethod
def format_facets(
es_aggregations: Dict[str, Any],
facet_configs: Optional[List[Any]] = None,
current_filters: Optional[Dict[str, Any]] = None
) -> List[FacetResult]:
"""
Format ES aggregations to FacetResult list with selected state.
支持:
1. 普通terms聚合
2. range聚合
3. specifications嵌套聚合(按name分组,然后按value聚合)
4. 标记selected状态(基于current_filters)
Args:
es_aggregations: ES aggregations response
facet_configs: Facet configurations (optional)
current_filters: Current applied filters (used to mark selected values)
Returns:
List of FacetResult objects with selected states
"""
facets = []
# Build a set of selected values for specifications
selected_specs = set()
if current_filters and 'specifications' in current_filters:
specs = current_filters['specifications']
if isinstance(specs, list):
# [{"name": "颜色", "value": "白色"}, ...]
for spec in specs:
if isinstance(spec, dict):
selected_specs.add((spec.get('name'), spec.get('value')))
elif isinstance(specs, dict):
# {"name": "颜色", "value": "白色"}
selected_specs.add((specs.get('name'), specs.get('value')))
for field_name, agg_data in es_aggregations.items():
display_field = field_name[:-6] if field_name.endswith("_facet") else field_name
# 处理specifications嵌套分面(所有name)
if field_name == "specifications_facet" and 'by_name' in agg_data:
# specifications嵌套聚合:按name分组,每个name下有value_counts
by_name_agg = agg_data['by_name']
if 'buckets' in by_name_agg:
for name_bucket in by_name_agg['buckets']:
name = name_bucket['key']
value_counts = name_bucket.get('value_counts', {})
values = []
if 'buckets' in value_counts:
for value_bucket in value_counts['buckets']:
# Check if this spec value is selected
is_selected = (name, value_bucket['key']) in selected_specs
value = FacetValue(
value=value_bucket['key'],
label=str(value_bucket['key']),
count=value_bucket['doc_count'],
selected=is_selected
)
values.append(value)
# 为每个name创建一个分面结果
facet = FacetResult(
field=f"specifications.{name}",
label=str(name), # 使用name作为label,如"颜色"、"尺寸"
type="terms",
values=values,
total_count=name_bucket['doc_count']
)
facets.append(facet)
continue
# 处理specifications嵌套分面(指定name,如 specifications.color)
if field_name.startswith("specifications_") and field_name.endswith("_facet"):
# 提取name(从 "specifications_color_facet" 提取 "color")
name = field_name[len("specifications_"):-len("_facet")]
# ES nested聚合返回结构: { "doc_count": N, "filter_by_name": { ... } }
# filter_by_name应该在agg_data的第一层
filter_by_name_agg = agg_data.get('filter_by_name')
if filter_by_name_agg:
value_counts = filter_by_name_agg.get('value_counts', {})
values = []
if 'buckets' in value_counts and value_counts['buckets']:
for value_bucket in value_counts['buckets']:
# Check if this spec value is selected
is_selected = (name, value_bucket['key']) in selected_specs
value = FacetValue(
value=value_bucket['key'],
label=str(value_bucket['key']),
count=value_bucket['doc_count'],
selected=is_selected
)
values.append(value)
# 创建分面结果
facet = FacetResult(
field=f"specifications.{name}",
label=str(name),
type="terms",
values=values,
total_count=filter_by_name_agg.get('doc_count', 0)
)
facets.append(facet)
continue
# Handle terms aggregation
if 'buckets' in agg_data:
values = []
for bucket in agg_data['buckets']:
# Check if this value is selected in current filters
is_selected = False
if current_filters and display_field in current_filters:
filter_value = current_filters[display_field]
if isinstance(filter_value, list):
is_selected = bucket['key'] in filter_value
else:
is_selected = bucket['key'] == filter_value
value = FacetValue(
value=bucket['key'],
label=bucket.get('key_as_string', str(bucket['key'])),
count=bucket['doc_count'],
selected=is_selected
)
values.append(value)
facet = FacetResult(
field=display_field,
label=display_field, # Can be enhanced with field labels
type="terms",
values=values,
total_count=agg_data.get('sum_other_doc_count', 0) + len(values)
)
facets.append(facet)
# Handle range aggregation
elif 'buckets' in agg_data and any('from' in b or 'to' in b for b in agg_data['buckets']):
values = []
for bucket in agg_data['buckets']:
range_key = bucket.get('key', '')
# Check if this range is selected
is_selected = False
if current_filters and display_field in current_filters:
filter_value = current_filters[display_field]
if isinstance(filter_value, list):
is_selected = range_key in filter_value
else:
is_selected = range_key == filter_value
value = FacetValue(
value=range_key,
label=range_key,
count=bucket['doc_count'],
selected=is_selected
)
values.append(value)
facet = FacetResult(
field=display_field,
label=display_field,
type="range",
values=values
)
facets.append(facet)
return facets
@staticmethod
def generate_suggestions(
query: str,
results: List[SpuResult]
) -> List[str]:
"""
Generate search suggestions.
Args:
query: Original search query
results: Search results
Returns:
List of suggestion strings (currently returns empty list)
"""
# TODO: Implement suggestion generation logic
return []
@staticmethod
def generate_related_searches(
query: str,
results: List[SpuResult]
) -> List[str]:
"""
Generate related searches.
Args:
query: Original search query
results: Search results
Returns:
List of related search strings (currently returns empty list)
"""
# TODO: Implement related search generation logic
return []