translator.py
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Translation service for multi-language query support.
Supports DeepL API for high-quality translations.
"""
import requests
from typing import Dict, List, Optional
from utils.cache import DictCache
# Try to import DEEPL_AUTH_KEY, but allow import to fail
try:
from config.env_config import DEEPL_AUTH_KEY
except ImportError:
DEEPL_AUTH_KEY = None
class Translator:
"""Multi-language translator using DeepL API."""
DEEPL_API_URL = "https://api.deepl.com/v2/translate" # Pro tier
# Language code mapping
LANG_CODE_MAP = {
'zh': 'ZH',
'en': 'EN',
'ru': 'RU',
'ar': 'AR',
'ja': 'JA',
'es': 'ES',
'de': 'DE',
'fr': 'FR',
'it': 'IT',
'pt': 'PT',
}
def __init__(
self,
api_key: Optional[str] = None,
use_cache: bool = True,
timeout: int = 10,
glossary_id: Optional[str] = None,
translation_context: Optional[str] = None
):
"""
Initialize translator.
Args:
api_key: DeepL API key (or None to use from config/env)
use_cache: Whether to cache translations
timeout: Request timeout in seconds
glossary_id: DeepL glossary ID for custom terminology (optional)
translation_context: Context hint for translation (e.g., "e-commerce", "product search")
"""
# Get API key from config if not provided
if api_key is None and DEEPL_AUTH_KEY:
api_key = DEEPL_AUTH_KEY
self.api_key = api_key
self.timeout = timeout
self.use_cache = use_cache
self.glossary_id = glossary_id
self.translation_context = translation_context or "e-commerce product search"
if use_cache:
self.cache = DictCache(".cache/translations.json")
else:
self.cache = None
def translate(
self,
text: str,
target_lang: str,
source_lang: Optional[str] = None,
context: Optional[str] = None
) -> Optional[str]:
"""
Translate text to target language.
Args:
text: Text to translate
target_lang: Target language code ('zh', 'en', 'ru', etc.)
source_lang: Source language code (optional, auto-detect if None)
context: Additional context for translation (overrides default context)
Returns:
Translated text or None if translation fails
"""
if not text or not text.strip():
return text
# Normalize language codes
target_lang = target_lang.lower()
if source_lang:
source_lang = source_lang.lower()
# Use provided context or default context
translation_context = context or self.translation_context
# Check cache (include context in cache key for accuracy)
if self.use_cache:
cache_key = f"{source_lang or 'auto'}:{target_lang}:{translation_context}:{text}"
cached = self.cache.get(cache_key, category="translations")
if cached:
return cached
# If no API key, return mock translation (for testing)
if not self.api_key:
print(f"[Translator] No API key, returning original text (mock mode)")
return text
# Translate using DeepL with fallback
result = self._translate_deepl(text, target_lang, source_lang, translation_context)
# If translation failed, try fallback to free API
if result is None and "api.deepl.com" in self.DEEPL_API_URL:
print(f"[Translator] Pro API failed, trying free API...")
result = self._translate_deepl_free(text, target_lang, source_lang, translation_context)
# If still failed, return original text with warning
if result is None:
print(f"[Translator] Translation failed, returning original text")
result = text
# Cache result
if result and self.use_cache:
cache_key = f"{source_lang or 'auto'}:{target_lang}:{translation_context}:{text}"
self.cache.set(cache_key, result, category="translations")
return result
def _translate_deepl(
self,
text: str,
target_lang: str,
source_lang: Optional[str],
context: Optional[str] = None
) -> Optional[str]:
"""
Translate using DeepL API with context and glossary support.
Args:
text: Text to translate
target_lang: Target language code
source_lang: Source language code (optional)
context: Context hint for translation (e.g., "e-commerce product search")
"""
# Map to DeepL language codes
target_code = self.LANG_CODE_MAP.get(target_lang, target_lang.upper())
headers = {
"Authorization": f"DeepL-Auth-Key {self.api_key}",
"Content-Type": "application/json",
}
# Build text with context for better disambiguation
# For e-commerce, add context words to help DeepL understand the domain
# This is especially important for single-word ambiguous terms like "车" (car vs rook)
text_to_translate, needs_extraction = self._add_ecommerce_context(text, source_lang, context)
payload = {
"text": [text_to_translate],
"target_lang": target_code,
}
if source_lang:
source_code = self.LANG_CODE_MAP.get(source_lang, source_lang.upper())
payload["source_lang"] = source_code
# Add glossary if configured
if self.glossary_id:
payload["glossary_id"] = self.glossary_id
# Note: DeepL API v2 doesn't have a direct "context" parameter,
# but we can improve translation by:
# 1. Using glossary for domain-specific terms (best solution)
# 2. Adding context words to the text (for single-word queries) - implemented in _add_ecommerce_context
# 3. Using more specific source language detection
try:
response = requests.post(
self.DEEPL_API_URL,
headers=headers,
json=payload,
timeout=self.timeout
)
if response.status_code == 200:
data = response.json()
if "translations" in data and len(data["translations"]) > 0:
translated_text = data["translations"][0]["text"]
# If we added context, extract just the term from the result
if needs_extraction:
translated_text = self._extract_term_from_translation(
translated_text, text, target_code
)
return translated_text
else:
print(f"[Translator] DeepL API error: {response.status_code} - {response.text}")
return None
except requests.Timeout:
print(f"[Translator] Translation request timed out")
return None
except Exception as e:
print(f"[Translator] Translation failed: {e}")
return None
def _translate_deepl_free(
self,
text: str,
target_lang: str,
source_lang: Optional[str],
context: Optional[str] = None
) -> Optional[str]:
"""
Translate using DeepL Free API.
Note: Free API may not support glossary_id parameter.
"""
# Map to DeepL language codes
target_code = self.LANG_CODE_MAP.get(target_lang, target_lang.upper())
headers = {
"Authorization": f"DeepL-Auth-Key {self.api_key}",
"Content-Type": "application/json",
}
payload = {
"text": [text],
"target_lang": target_code,
}
if source_lang:
source_code = self.LANG_CODE_MAP.get(source_lang, source_lang.upper())
payload["source_lang"] = source_code
# Note: Free API typically doesn't support glossary_id
# But we can still use context hints in the text
try:
response = requests.post(
"https://api-free.deepl.com/v2/translate",
headers=headers,
json=payload,
timeout=self.timeout
)
if response.status_code == 200:
data = response.json()
if "translations" in data and len(data["translations"]) > 0:
return data["translations"][0]["text"]
else:
print(f"[Translator] DeepL Free API error: {response.status_code} - {response.text}")
return None
except requests.Timeout:
print(f"[Translator] Free API request timed out")
return None
except Exception as e:
print(f"[Translator] Free API translation failed: {e}")
return None
def translate_multi(
self,
text: str,
target_langs: List[str],
source_lang: Optional[str] = None,
context: Optional[str] = None
) -> Dict[str, Optional[str]]:
"""
Translate text to multiple target languages.
Args:
text: Text to translate
target_langs: List of target language codes
source_lang: Source language code (optional)
context: Context hint for translation (optional)
Returns:
Dictionary mapping language code to translated text
"""
results = {}
for lang in target_langs:
results[lang] = self.translate(text, lang, source_lang, context)
return results
def _add_ecommerce_context(
self,
text: str,
source_lang: Optional[str],
context: Optional[str]
) -> tuple:
"""
Add e-commerce context to text for better disambiguation.
For single-word ambiguous Chinese terms, we add context words that help
DeepL understand this is an e-commerce/product search context.
Args:
text: Original text to translate
source_lang: Source language code
context: Context hint
Returns:
Tuple of (text_with_context, needs_extraction)
- text_with_context: Text to send to DeepL
- needs_extraction: Whether we need to extract the term from the result
"""
# Only apply for e-commerce context and Chinese source
if not context or "e-commerce" not in context.lower():
return text, False
if not source_lang or source_lang.lower() != 'zh':
return text, False
# For single-word queries, add context to help disambiguation
text_stripped = text.strip()
if len(text_stripped.split()) == 1 and len(text_stripped) <= 2:
# Common ambiguous Chinese e-commerce terms like "车" (car vs rook)
# We add a context phrase: "购买 [term]" (buy [term]) or "商品 [term]" (product [term])
# This helps DeepL understand the e-commerce context
# We'll need to extract just the term from the translation result
context_phrase = f"购买 {text_stripped}"
return context_phrase, True
# For multi-word queries, DeepL usually has enough context
return text, False
def _extract_term_from_translation(
self,
translated_text: str,
original_text: str,
target_lang_code: str
) -> str:
"""
Extract the actual term from a translation that included context.
For example, if we translated "购买 车" (buy car) and got "buy car",
we want to extract just "car".
Args:
translated_text: Full translation result
original_text: Original single-word query
target_lang_code: Target language code (EN, ZH, etc.)
Returns:
Extracted term or original translation if extraction fails
"""
# For English target, try to extract the last word (the actual term)
if target_lang_code == "EN":
words = translated_text.strip().split()
if len(words) > 1:
# Usually the last word is the term we want
# But we need to be smart - if it's "buy car", we want "car"
# Common context words to skip: buy, purchase, product, item, etc.
context_words = {"buy", "purchase", "product", "item", "commodity", "goods"}
# Try to find the term (not a context word)
for word in reversed(words):
word_lower = word.lower().rstrip('.,!?;:')
if word_lower not in context_words:
return word_lower
# If all words are context words, return the last one
return words[-1].lower().rstrip('.,!?;:')
# For other languages or if extraction fails, return as-is
# The user can configure a glossary for better results
return translated_text
def get_translation_needs(
self,
detected_lang: str,
supported_langs: List[str]
) -> List[str]:
"""
Determine which languages need translation.
Args:
detected_lang: Detected query language
supported_langs: List of supported languages
Returns:
List of language codes to translate to
"""
# If detected language is in supported list, translate to others
if detected_lang in supported_langs:
return [lang for lang in supported_langs if lang != detected_lang]
# Otherwise, translate to all supported languages
return supported_langs