spu_transformer.py 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
"""
SPU data transformer for Shoplazza products.

Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
"""

import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection


class SPUTransformer:
    """Transform SPU and SKU data into SPU-level ES documents."""

    def __init__(
        self,
        db_engine: Any,
        tenant_id: str
    ):
        """
        Initialize SPU transformer.

        Args:
            db_engine: SQLAlchemy database engine
            tenant_id: Tenant ID for filtering data
        """
        self.db_engine = db_engine
        self.tenant_id = tenant_id

    def load_spu_data(self) -> pd.DataFrame:
        """
        Load SPU data from MySQL.

        Returns:
            DataFrame with SPU data
        """
        query = text("""
            SELECT 
                id, shop_id, shoplazza_id, title, brief, description,
                spu, vendor, vendor_url,
                image_src, image_width, image_height, image_path, image_alt,
                tags, note, category, category_id, category_google_id,
                category_level, category_path,
                tenant_id, creator, create_time, updater, update_time, deleted
            FROM shoplazza_product_spu
            WHERE tenant_id = :tenant_id AND deleted = 0
        """)
        
        with self.db_engine.connect() as conn:
            df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
        
        # Debug: Check if there's any data for this tenant_id
        if len(df) == 0:
            debug_query = text("""
                SELECT 
                    COUNT(*) as total_count,
                    SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
                    SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
                FROM shoplazza_product_spu
                WHERE tenant_id = :tenant_id
            """)
            with self.db_engine.connect() as conn:
                debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
            if not debug_df.empty:
                total = debug_df.iloc[0]['total_count']
                active = debug_df.iloc[0]['active_count']
                deleted = debug_df.iloc[0]['deleted_count']
                print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
            
            # Check what tenant_ids exist in the table
            tenant_check_query = text("""
                SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
                FROM shoplazza_product_spu
                GROUP BY tenant_id
                ORDER BY tenant_id
                LIMIT 10
            """)
            with self.db_engine.connect() as conn:
                tenant_df = pd.read_sql(tenant_check_query, conn)
            if not tenant_df.empty:
                print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
                for _, row in tenant_df.iterrows():
                    print(f"  tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
        
        return df

    def load_sku_data(self) -> pd.DataFrame:
        """
        Load SKU data from MySQL.

        Returns:
            DataFrame with SKU data
        """
        query = text("""
            SELECT 
                id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
                shoplazza_image_id, title, sku, barcode, position,
                price, compare_at_price, cost_price,
                option1, option2, option3,
                inventory_quantity, weight, weight_unit, image_src,
                wholesale_price, note, extend,
                shoplazza_created_at, shoplazza_updated_at, tenant_id,
                creator, create_time, updater, update_time, deleted
            FROM shoplazza_product_sku
            WHERE tenant_id = :tenant_id AND deleted = 0
        """)
        
        with self.db_engine.connect() as conn:
            df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
        
        print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
        
        return df

    def load_option_data(self) -> pd.DataFrame:
        """
        Load option data from MySQL.

        Returns:
            DataFrame with option data (name, position for each SPU)
        """
        query = text("""
            SELECT 
                id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
                position, name, values, tenant_id,
                creator, create_time, updater, update_time, deleted
            FROM shoplazza_product_option
            WHERE tenant_id = :tenant_id AND deleted = 0
            ORDER BY spu_id, position
        """)
        
        with self.db_engine.connect() as conn:
            df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
        
        print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
        
        return df

    def transform_batch(self) -> List[Dict[str, Any]]:
        """
        Transform SPU and SKU data into ES documents.

        Returns:
            List of SPU-level ES documents
        """
        # Load data
        spu_df = self.load_spu_data()
        sku_df = self.load_sku_data()
        option_df = self.load_option_data()

        if spu_df.empty:
            return []

        # Group SKUs by SPU
        sku_groups = sku_df.groupby('spu_id')
        
        # Group options by SPU
        option_groups = option_df.groupby('spu_id') if not option_df.empty else None

        documents = []
        for _, spu_row in spu_df.iterrows():
            spu_id = spu_row['id']
            
            # Get SKUs for this SPU
            skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
            
            # Get options for this SPU
            options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
            
            # Transform to ES document
            doc = self._transform_spu_to_doc(spu_row, skus, options)
            if doc:
                documents.append(doc)

        return documents

    def _transform_spu_to_doc(
        self,
        spu_row: pd.Series,
        skus: pd.DataFrame,
        options: pd.DataFrame
    ) -> Optional[Dict[str, Any]]:
        """
        Transform a single SPU row and its SKUs into an ES document.

        Args:
            spu_row: SPU row from database
            skus: DataFrame with SKUs for this SPU
            options: DataFrame with options for this SPU

        Returns:
            ES document or None if transformation fails
        """
        doc = {}

        # Tenant ID (required)
        doc['tenant_id'] = str(self.tenant_id)

        # SPU ID
        doc['spu_id'] = str(spu_row['id'])

        # 文本相关性相关字段(中英文双语,暂时只填充中文)
        if pd.notna(spu_row.get('title')):
            doc['title_zh'] = str(spu_row['title'])
        doc['title_en'] = None  # 暂时设为空

        if pd.notna(spu_row.get('brief')):
            doc['brief_zh'] = str(spu_row['brief'])
        doc['brief_en'] = None

        if pd.notna(spu_row.get('description')):
            doc['description_zh'] = str(spu_row['description'])
        doc['description_en'] = None

        if pd.notna(spu_row.get('vendor')):
            doc['vendor_zh'] = str(spu_row['vendor'])
        doc['vendor_en'] = None

        # Tags
        if pd.notna(spu_row.get('tags')):
            # Tags是逗号分隔的字符串,需要转换为数组
            tags_str = str(spu_row['tags'])
            doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]

        # Category相关字段
        if pd.notna(spu_row.get('category_path')):
            category_path = str(spu_row['category_path'])
            doc['category_path_zh'] = category_path
            doc['category_path_en'] = None  # 暂时设为空
            
            # 解析category_path获取多层级分类名称
            path_parts = category_path.split('/')
            if len(path_parts) > 0:
                doc['category1_name'] = path_parts[0].strip()
            if len(path_parts) > 1:
                doc['category2_name'] = path_parts[1].strip()
            if len(path_parts) > 2:
                doc['category3_name'] = path_parts[2].strip()

        if pd.notna(spu_row.get('category')):
            category_name = str(spu_row['category'])
            doc['category_name_zh'] = category_name
            doc['category_name_en'] = None
            doc['category_name'] = category_name

        if pd.notna(spu_row.get('category_id')):
            doc['category_id'] = str(int(spu_row['category_id']))

        if pd.notna(spu_row.get('category_level')):
            doc['category_level'] = int(spu_row['category_level'])

        # Option名称(从option表获取)
        if not options.empty:
            # 按position排序获取option名称
            sorted_options = options.sort_values('position')
            if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
                doc['option1_name'] = str(sorted_options.iloc[0]['name'])
            if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
                doc['option2_name'] = str(sorted_options.iloc[1]['name'])
            if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
                doc['option3_name'] = str(sorted_options.iloc[2]['name'])

        # Image URL
        if pd.notna(spu_row.get('image_src')):
            image_src = str(spu_row['image_src'])
            if not image_src.startswith('http'):
                image_src = f"//{image_src}" if image_src.startswith('//') else image_src
            doc['image_url'] = image_src

        # Process SKUs and build specifications
        skus_list = []
        prices = []
        compare_prices = []
        sku_prices = []
        sku_weights = []
        sku_weight_units = []
        total_inventory = 0
        specifications = []

        # 构建option名称映射(position -> name)
        option_name_map = {}
        if not options.empty:
            for _, opt_row in options.iterrows():
                position = opt_row.get('position')
                name = opt_row.get('name')
                if pd.notna(position) and pd.notna(name):
                    option_name_map[int(position)] = str(name)

        for _, sku_row in skus.iterrows():
            sku_data = self._transform_sku_row(sku_row, option_name_map)
            if sku_data:
                skus_list.append(sku_data)
                
                # 收集价格信息
                if 'price' in sku_data and sku_data['price'] is not None:
                    try:
                        price_val = float(sku_data['price'])
                        prices.append(price_val)
                        sku_prices.append(price_val)
                    except (ValueError, TypeError):
                        pass
                
                if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
                    try:
                        compare_prices.append(float(sku_data['compare_at_price']))
                    except (ValueError, TypeError):
                        pass
                
                # 收集重量信息
                if 'weight' in sku_data and sku_data['weight'] is not None:
                    try:
                        sku_weights.append(int(float(sku_data['weight'])))
                    except (ValueError, TypeError):
                        pass
                
                if 'weight_unit' in sku_data and sku_data['weight_unit']:
                    sku_weight_units.append(str(sku_data['weight_unit']))
                
                # 收集库存信息
                if 'stock' in sku_data and sku_data['stock'] is not None:
                    try:
                        total_inventory += int(sku_data['stock'])
                    except (ValueError, TypeError):
                        pass
                
                # 构建specifications(从SKU的option值和option表的name)
                sku_id = str(sku_row['id'])
                if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[1],
                        'value': str(sku_row['option1'])
                    })
                if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[2],
                        'value': str(sku_row['option2'])
                    })
                if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
                    specifications.append({
                        'sku_id': sku_id,
                        'name': option_name_map[3],
                        'value': str(sku_row['option3'])
                    })

        doc['skus'] = skus_list
        doc['specifications'] = specifications

        # Calculate price ranges
        if prices:
            doc['min_price'] = float(min(prices))
            doc['max_price'] = float(max(prices))
        else:
            doc['min_price'] = 0.0
            doc['max_price'] = 0.0

        if compare_prices:
            doc['compare_at_price'] = float(max(compare_prices))
        else:
            doc['compare_at_price'] = None

        # SKU扁平化字段
        doc['sku_prices'] = sku_prices
        doc['sku_weights'] = sku_weights
        doc['sku_weight_units'] = list(set(sku_weight_units))  # 去重
        doc['total_inventory'] = total_inventory

        # Image URL
        if pd.notna(spu_row.get('image_src')):
            image_src = str(spu_row['image_src'])
            if not image_src.startswith('http'):
                image_src = f"//{image_src}" if image_src.startswith('//') else image_src
            doc['image_url'] = image_src

        # Time fields - convert datetime to ISO format string for ES DATE type
        if pd.notna(spu_row.get('create_time')):
            create_time = spu_row['create_time']
            if hasattr(create_time, 'isoformat'):
                doc['create_time'] = create_time.isoformat()
            else:
                doc['create_time'] = str(create_time)
        
        if pd.notna(spu_row.get('update_time')):
            update_time = spu_row['update_time']
            if hasattr(update_time, 'isoformat'):
                doc['update_time'] = update_time.isoformat()
            else:
                doc['update_time'] = str(update_time)

        return doc

    def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
        """
        Transform a SKU row into a SKU object.

        Args:
            sku_row: SKU row from database
            option_name_map: Mapping from position to option name

        Returns:
            SKU dictionary or None
        """
        sku_data = {}

        # SKU ID
        sku_data['sku_id'] = str(sku_row['id'])

        # Price
        if pd.notna(sku_row.get('price')):
            try:
                sku_data['price'] = float(sku_row['price'])
            except (ValueError, TypeError):
                sku_data['price'] = None
        else:
            sku_data['price'] = None

        # Compare at price
        if pd.notna(sku_row.get('compare_at_price')):
            try:
                sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
            except (ValueError, TypeError):
                sku_data['compare_at_price'] = None
        else:
            sku_data['compare_at_price'] = None

        # SKU Code
        if pd.notna(sku_row.get('sku')):
            sku_data['sku_code'] = str(sku_row['sku'])

        # Stock
        if pd.notna(sku_row.get('inventory_quantity')):
            try:
                sku_data['stock'] = int(sku_row['inventory_quantity'])
            except (ValueError, TypeError):
                sku_data['stock'] = 0
        else:
            sku_data['stock'] = 0

        # Weight
        if pd.notna(sku_row.get('weight')):
            try:
                sku_data['weight'] = float(sku_row['weight'])
            except (ValueError, TypeError):
                sku_data['weight'] = None
        else:
            sku_data['weight'] = None

        # Weight unit
        if pd.notna(sku_row.get('weight_unit')):
            sku_data['weight_unit'] = str(sku_row['weight_unit'])

        # Option values
        if pd.notna(sku_row.get('option1')):
            sku_data['option1_value'] = str(sku_row['option1'])
        if pd.notna(sku_row.get('option2')):
            sku_data['option2_value'] = str(sku_row['option2'])
        if pd.notna(sku_row.get('option3')):
            sku_data['option3_value'] = str(sku_row['option3'])

        # Image src
        if pd.notna(sku_row.get('image_src')):
            sku_data['image_src'] = str(sku_row['image_src'])

        return sku_data