es_query_builder.py 12.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
"""
Elasticsearch query builder.

Converts parsed queries and search parameters into ES DSL queries.
"""

from typing import Dict, Any, List, Optional, Union
import numpy as np
from .boolean_parser import QueryNode


class ESQueryBuilder:
    """Builds Elasticsearch DSL queries."""

    def __init__(
        self,
        index_name: str,
        match_fields: List[str],
        text_embedding_field: Optional[str] = None,
        image_embedding_field: Optional[str] = None,
        source_fields: Optional[List[str]] = None
    ):
        """
        Initialize query builder.

        Args:
            index_name: ES index name
            match_fields: Fields to search for text matching
            text_embedding_field: Field name for text embeddings
            image_embedding_field: Field name for image embeddings
            source_fields: Fields to return in search results (_source includes)
        """
        self.index_name = index_name
        self.match_fields = match_fields
        self.text_embedding_field = text_embedding_field
        self.image_embedding_field = image_embedding_field
        self.source_fields = source_fields

    def build_query(
        self,
        query_text: str,
        query_vector: Optional[np.ndarray] = None,
        query_node: Optional[QueryNode] = None,
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, Any]] = None,
        size: int = 10,
        from_: int = 0,
        enable_knn: bool = True,
        knn_k: int = 50,
        knn_num_candidates: int = 200,
        min_score: Optional[float] = None
    ) -> Dict[str, Any]:
        """
        Build complete ES query (重构版).

        Args:
            query_text: Query text for BM25 matching
            query_vector: Query embedding for KNN search
            query_node: Parsed boolean expression tree
            filters: Exact match filters
            range_filters: Range filters for numeric fields
            size: Number of results
            from_: Offset for pagination
            enable_knn: Whether to use KNN search
            knn_k: K value for KNN
            knn_num_candidates: Number of candidates for KNN
            min_score: Minimum score threshold

        Returns:
            ES query DSL dictionary
        """
        es_query = {
            "size": size,
            "from": from_
        }

        # Add _source filtering if source_fields are configured
        if self.source_fields:
            es_query["_source"] = {
                "includes": self.source_fields
            }

        # Build main query
        if query_node and query_node.operator != 'TERM':
            # Complex boolean query
            query_clause = self._build_boolean_query(query_node)
        else:
            # Simple text query
            query_clause = self._build_text_query(query_text)

        # Add filters if provided
        if filters or range_filters:
            filter_clauses = self._build_filters(filters, range_filters)
            if filter_clauses:
                es_query["query"] = {
                    "bool": {
                        "must": [query_clause],
                        "filter": filter_clauses
                    }
                }
            else:
                es_query["query"] = query_clause
        else:
            es_query["query"] = query_clause

        # Add KNN search if enabled and vector provided
        if enable_knn and query_vector is not None and self.text_embedding_field:
            knn_clause = {
                "field": self.text_embedding_field,
                "query_vector": query_vector.tolist(),
                "k": knn_k,
                "num_candidates": knn_num_candidates
            }
            es_query["knn"] = knn_clause

        # Add minimum score filter
        if min_score is not None:
            es_query["min_score"] = min_score

        return es_query

    def _build_text_query(self, query_text: str) -> Dict[str, Any]:
        """
        Build simple text matching query (BM25).

        Args:
            query_text: Query text

        Returns:
            ES query clause
        """
        return {
            "multi_match": {
                "query": query_text,
                "fields": self.match_fields,
                "minimum_should_match": "67%",
                "tie_breaker": 0.9,
                "boost": 1.0,
                "_name": "base_query"
            }
        }

    def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
        """
        Build query from boolean expression tree.

        Args:
            node: Query tree node

        Returns:
            ES query clause
        """
        if node.operator == 'TERM':
            # Leaf node - simple text query
            return self._build_text_query(node.value)

        elif node.operator == 'AND':
            # All terms must match
            return {
                "bool": {
                    "must": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ]
                }
            }

        elif node.operator == 'OR':
            # Any term must match
            return {
                "bool": {
                    "should": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ],
                    "minimum_should_match": 1
                }
            }

        elif node.operator == 'ANDNOT':
            # First term must match, second must not
            if len(node.terms) >= 2:
                return {
                    "bool": {
                        "must": [self._build_boolean_query(node.terms[0])],
                        "must_not": [self._build_boolean_query(node.terms[1])]
                    }
                }
            else:
                return self._build_boolean_query(node.terms[0])

        elif node.operator == 'RANK':
            # Like OR but for ranking (all terms contribute to score)
            return {
                "bool": {
                    "should": [
                        self._build_boolean_query(term)
                        for term in node.terms
                    ]
                }
            }

        else:
            # Unknown operator
            return {"match_all": {}}

    def _build_filters(
        self, 
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, 'RangeFilter']] = None
    ) -> List[Dict[str, Any]]:
        """
        构建过滤子句。
        
        Args:
            filters: 精确匹配过滤器字典
            range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
        
        Returns:
            ES filter 子句列表
        """
        filter_clauses = []
        
        # 1. 处理精确匹配过滤
        if filters:
            for field, value in filters.items():
                if isinstance(value, list):
                    # 多值匹配(OR)
                    filter_clauses.append({
                        "terms": {field: value}
                    })
                else:
                    # 单值精确匹配
                    filter_clauses.append({
                        "term": {field: value}
                    })
        
        # 2. 处理范围过滤(RangeFilter Pydantic 模型)
        if range_filters:
            for field, range_filter in range_filters.items():
                # 将 RangeFilter 模型转换为字典
                range_dict = range_filter.model_dump(exclude_none=True)
                
                if range_dict:
                    filter_clauses.append({
                        "range": {field: range_dict}
                    })
        
        return filter_clauses

    def add_spu_collapse(
        self,
        es_query: Dict[str, Any],
        spu_field: str,
        inner_hits_size: int = 3
    ) -> Dict[str, Any]:
        """
        Add SPU aggregation/collapse to query.

        Args:
            es_query: Existing ES query
            spu_field: Field containing SPU ID
            inner_hits_size: Number of SKUs to return per SPU

        Returns:
            Modified ES query
        """
        # Add collapse
        es_query["collapse"] = {
            "field": spu_field,
            "inner_hits": {
                "_source": False,
                "name": "top_docs",
                "size": inner_hits_size
            }
        }

        # Add cardinality aggregation to count unique SPUs
        if "aggs" not in es_query:
            es_query["aggs"] = {}

        es_query["aggs"]["unique_count"] = {
            "cardinality": {
                "field": spu_field
            }
        }

        return es_query

    def add_sorting(
        self,
        es_query: Dict[str, Any],
        sort_by: str,
        sort_order: str = "desc"
    ) -> Dict[str, Any]:
        """
        Add sorting to ES query.

        Args:
            es_query: Existing ES query
            sort_by: Field name for sorting
            sort_order: Sort order: 'asc' or 'desc'

        Returns:
            Modified ES query
        """
        if not sort_by:
            return es_query

        if not sort_order:
            sort_order = "desc"

        if "sort" not in es_query:
            es_query["sort"] = []

        # Add the specified sort
        sort_field = {
            sort_by: {
                "order": sort_order.lower()
            }
        }
        es_query["sort"].append(sort_field)

        return es_query

    def build_facets(
        self,
        facet_configs: Optional[List[Union[str, 'FacetConfig']]] = None
    ) -> Dict[str, Any]:
        """
        构建分面聚合。
        
        支持:
        1. 分类分面:category1_name, category2_name, category3_name, category_name
        2. specifications分面:嵌套聚合,按name聚合,然后按value聚合
        
        Args:
            facet_configs: 分面配置列表(标准格式):
                - str: 字段名,使用默认 terms 配置
                - FacetConfig: 详细的分面配置对象
                - 特殊值 "specifications": 构建specifications嵌套分面
        
        Returns:
            ES aggregations 字典
        """
        if not facet_configs:
            return {}
        
        aggs = {}
        
        for config in facet_configs:
            # 特殊处理:specifications嵌套分面
            if isinstance(config, str) and config == "specifications":
                # 构建specifications嵌套分面(按name聚合,然后按value聚合)
                aggs["specifications_facet"] = {
                    "nested": {
                        "path": "specifications"
                    },
                    "aggs": {
                        "by_name": {
                            "terms": {
                                "field": "specifications.name",
                                "size": 20,
                                "order": {"_count": "desc"}
                            },
                            "aggs": {
                                "value_counts": {
                                    "terms": {
                                        "field": "specifications.value",
                                        "size": 10,
                                        "order": {"_count": "desc"}
                                    }
                                }
                            }
                        }
                    }
                }
                continue
            
            # 简单模式:只有字段名(字符串)
            if isinstance(config, str):
                field = config
                agg_name = f"{field}_facet"
                aggs[agg_name] = {
                    "terms": {
                        "field": field,
                        "size": 10,
                        "order": {"_count": "desc"}
                    }
                }
            
            # 高级模式:FacetConfig 对象
            else:
                # 此时 config 应该是 FacetConfig 对象
                field = config.field
                facet_type = config.type
                size = config.size
                agg_name = f"{field}_facet"
                
                if facet_type == 'terms':
                    aggs[agg_name] = {
                        "terms": {
                            "field": field,
                            "size": size,
                            "order": {"_count": "desc"}
                        }
                    }
                
                elif facet_type == 'range':
                    if config.ranges:
                        aggs[agg_name] = {
                            "range": {
                                "field": field,
                                "ranges": config.ranges
                            }
                        }
        
        return aggs