searcher.py 24.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
"""
Main Searcher module - executes search queries against Elasticsearch.

Handles query parsing, boolean expressions, ranking, and result formatting.
"""

from typing import Dict, Any, List, Optional, Union
import time

from config import SearchConfig
from utils.es_client import ESClient
from query import QueryParser, ParsedQuery
from indexer import MappingGenerator
from .boolean_parser import BooleanParser, QueryNode
from .es_query_builder import ESQueryBuilder
from .multilang_query_builder import MultiLanguageQueryBuilder
from .rerank_engine import RerankEngine
from context.request_context import RequestContext, RequestContextStage, create_request_context
from api.models import FacetResult, FacetValue
from api.result_formatter import ResultFormatter


class SearchResult:
    """Container for search results (外部友好格式)."""

    def __init__(
        self,
        results: List[Any],  # List[ProductResult]
        total: int,
        max_score: float,
        took_ms: int,
        facets: Optional[List[FacetResult]] = None,
        query_info: Optional[Dict[str, Any]] = None,
        suggestions: Optional[List[str]] = None,
        related_searches: Optional[List[str]] = None,
        debug_info: Optional[Dict[str, Any]] = None
    ):
        self.results = results
        self.total = total
        self.max_score = max_score
        self.took_ms = took_ms
        self.facets = facets
        self.query_info = query_info or {}
        self.suggestions = suggestions or []
        self.related_searches = related_searches or []
        self.debug_info = debug_info

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary representation."""
        result = {
            "results": [r.model_dump() if hasattr(r, 'model_dump') else r for r in self.results],
            "total": self.total,
            "max_score": self.max_score,
            "took_ms": self.took_ms,
            "facets": [f.model_dump() for f in self.facets] if self.facets else None,
            "query_info": self.query_info,
            "suggestions": self.suggestions,
            "related_searches": self.related_searches
        }
        if self.debug_info is not None:
            result["debug_info"] = self.debug_info
        return result


class Searcher:
    """
    Main search engine class.

    Handles:
    - Query parsing and translation
    - Boolean expression parsing
    - ES query building
    - Result ranking and formatting
    """

    def __init__(
        self,
        config: SearchConfig,
        es_client: ESClient,
        query_parser: Optional[QueryParser] = None
    ):
        """
        Initialize searcher.

        Args:
            config: Search configuration
            es_client: Elasticsearch client
            query_parser: Query parser (created if not provided)
        """
        self.config = config
        self.es_client = es_client
        self.query_parser = query_parser or QueryParser(config)

        # Initialize components
        self.boolean_parser = BooleanParser()
        self.rerank_engine = RerankEngine(config.ranking.expression, enabled=False)

        # Get mapping info
        mapping_gen = MappingGenerator(config)
        self.match_fields = mapping_gen.get_match_fields_for_domain("default")
        self.text_embedding_field = mapping_gen.get_text_embedding_field()
        self.image_embedding_field = mapping_gen.get_image_embedding_field()

        # Query builder - use multi-language version
        self.query_builder = MultiLanguageQueryBuilder(
            config=config,
            index_name=config.es_index_name,
            text_embedding_field=self.text_embedding_field,
            image_embedding_field=self.image_embedding_field,
            source_fields=config.query_config.source_fields
        )

    def search(
        self,
        query: str,
        tenant_id: str,
        size: int = 10,
        from_: int = 0,
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, Any]] = None,
        facets: Optional[List[Any]] = None,
        min_score: Optional[float] = None,
        context: Optional[RequestContext] = None,
        sort_by: Optional[str] = None,
        sort_order: Optional[str] = "desc",
        debug: bool = False
    ) -> SearchResult:
        """
        Execute search query (外部友好格式).

        Args:
            query: Search query string
            tenant_id: Tenant ID (required for filtering)
            size: Number of results to return
            from_: Offset for pagination
            filters: Exact match filters
            range_filters: Range filters for numeric fields
            facets: Facet configurations for faceted search
            min_score: Minimum score threshold
            context: Request context for tracking (created if not provided)
            sort_by: Field name for sorting
            sort_order: Sort order: 'asc' or 'desc'
            debug: Enable debug information output

        Returns:
            SearchResult object with formatted results
        """
        # Create context if not provided (backward compatibility)
        if context is None:
            context = create_request_context()

        # Always use config defaults (these are backend configuration, not user parameters)
        enable_translation = self.config.query_config.enable_translation
        enable_embedding = self.config.query_config.enable_text_embedding
        enable_rerank = False  # Temporarily disabled

        # Start timing
        context.start_stage(RequestContextStage.TOTAL)

        context.logger.info(
            f"开始搜索请求 | 查询: '{query}' | 参数: size={size}, from_={from_}, "
            f"enable_translation={enable_translation}, enable_embedding={enable_embedding}, "
            f"enable_rerank={enable_rerank}, min_score={min_score}",
            extra={'reqid': context.reqid, 'uid': context.uid}
        )

        # Store search parameters in context
        context.metadata['search_params'] = {
            'size': size,
            'from_': from_,
            'filters': filters,
            'range_filters': range_filters,
            'facets': facets,
            'enable_translation': enable_translation,
            'enable_embedding': enable_embedding,
            'enable_rerank': enable_rerank,
            'min_score': min_score,
            'sort_by': sort_by,
            'sort_order': sort_order
        }

        context.metadata['feature_flags'] = {
            'translation_enabled': enable_translation,
            'embedding_enabled': enable_embedding,
            'rerank_enabled': enable_rerank
        }

        # Step 1: Parse query
        context.start_stage(RequestContextStage.QUERY_PARSING)
        try:
            parsed_query = self.query_parser.parse(
                query,
                generate_vector=enable_embedding,
                context=context
            )
            # Store query analysis results in context
            context.store_query_analysis(
                original_query=parsed_query.original_query,
                normalized_query=parsed_query.normalized_query,
                rewritten_query=parsed_query.rewritten_query,
                detected_language=parsed_query.detected_language,
                translations=parsed_query.translations,
                query_vector=parsed_query.query_vector.tolist() if parsed_query.query_vector is not None else None,
                domain=parsed_query.domain,
                is_simple_query=self.boolean_parser.is_simple_query(parsed_query.rewritten_query)
            )

            context.logger.info(
                f"查询解析完成 | 原查询: '{parsed_query.original_query}' | "
                f"重写后: '{parsed_query.rewritten_query}' | "
                f"语言: {parsed_query.detected_language} | "
                f"域: {parsed_query.domain} | "
                f"向量: {'是' if parsed_query.query_vector is not None else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"查询解析失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.QUERY_PARSING)

        # Step 2: Boolean parsing
        context.start_stage(RequestContextStage.BOOLEAN_PARSING)
        try:
            query_node = None
            if self.boolean_parser.is_simple_query(parsed_query.rewritten_query):
                # Simple query
                query_text = parsed_query.rewritten_query
                context.logger.debug(
                    f"简单查询 | 无布尔表达式",
                    extra={'reqid': context.reqid, 'uid': context.uid}
                )
            else:
                # Complex boolean query
                query_node = self.boolean_parser.parse(parsed_query.rewritten_query)
                query_text = parsed_query.rewritten_query
                context.store_intermediate_result('query_node', query_node)
                context.store_intermediate_result('boolean_ast', str(query_node))
                context.logger.info(
                    f"布尔表达式解析 | AST: {query_node}",
                    extra={'reqid': context.reqid, 'uid': context.uid}
                )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"布尔表达式解析失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.BOOLEAN_PARSING)

        # Step 3: Query building
        context.start_stage(RequestContextStage.QUERY_BUILDING)
        try:
            # Add tenant_id to filters (required)
            if filters is None:
                filters = {}
            filters['tenant_id'] = tenant_id

            es_query = self.query_builder.build_multilang_query(
                parsed_query=parsed_query,
                query_vector=parsed_query.query_vector if enable_embedding else None,
                query_node=query_node,
                filters=filters,
                range_filters=range_filters,
                size=size,
                from_=from_,
                enable_knn=enable_embedding and parsed_query.query_vector is not None,
                min_score=min_score
            )

            # Add SPU collapse if configured
            if self.config.spu_config.enabled:
                es_query = self.query_builder.add_spu_collapse(
                    es_query,
                    self.config.spu_config.spu_field,
                    self.config.spu_config.inner_hits_size
                )

            # Add facets for faceted search
            if facets:
                facet_aggs = self.query_builder.build_facets(facets)
                if facet_aggs:
                    if "aggs" not in es_query:
                        es_query["aggs"] = {}
                    es_query["aggs"].update(facet_aggs)

            # Add sorting if specified
            if sort_by:
                es_query = self.query_builder.add_sorting(es_query, sort_by, sort_order)

            # Extract size and from from body for ES client parameters
            body_for_es = {k: v for k, v in es_query.items() if k not in ['size', 'from']}

            # Store ES query in context
            context.store_intermediate_result('es_query', es_query)
            context.store_intermediate_result('es_body_for_search', body_for_es)

            context.logger.info(
                f"ES查询构建完成 | 大小: {len(str(es_query))}字符 | "
                f"KNN: {'是' if enable_embedding and parsed_query.query_vector is not None else '否'} | "
                f"分面: {'是' if facets else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            context.logger.debug(
                f"ES查询详情: {es_query}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"ES查询构建失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.QUERY_BUILDING)

        # Step 4: Elasticsearch search
        context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
        try:
            es_response = self.es_client.search(
                index_name=self.config.es_index_name,
                body=body_for_es,
                size=size,
                from_=from_
            )

            # Store ES response in context
            context.store_intermediate_result('es_response', es_response)

            # Extract timing from ES response
            es_took = es_response.get('took', 0)
            context.logger.info(
                f"ES搜索完成 | 耗时: {es_took}ms | "
                f"命中数: {es_response.get('hits', {}).get('total', {}).get('value', 0)} | "
                f"最高分: {(es_response.get('hits', {}).get('max_score') or 0):.3f}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"ES搜索执行失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)

        # Step 5: Result processing
        context.start_stage(RequestContextStage.RESULT_PROCESSING)
        try:
            # Extract ES hits
            es_hits = []
            if 'hits' in es_response and 'hits' in es_response['hits']:
                es_hits = es_response['hits']['hits']

            # Extract total and max_score
            total = es_response.get('hits', {}).get('total', {})
            if isinstance(total, dict):
                total_value = total.get('value', 0)
            else:
                total_value = total

            max_score = es_response.get('hits', {}).get('max_score') or 0.0

            # Format results using ResultFormatter
            formatted_results = ResultFormatter.format_search_results(es_hits, max_score)

            # Format facets
            standardized_facets = None
            if facets:
                standardized_facets = ResultFormatter.format_facets(
                    es_response.get('aggregations', {}),
                    facets
                )

            # Generate suggestions and related searches
            query_text = parsed_query.original_query if parsed_query else query
            suggestions = ResultFormatter.generate_suggestions(query_text, formatted_results)
            related_searches = ResultFormatter.generate_related_searches(query_text, formatted_results)

            context.logger.info(
                f"结果处理完成 | 返回: {len(formatted_results)}条 | 总计: {total_value}条",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )

        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"结果处理失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.RESULT_PROCESSING)

        # End total timing and build result
        total_duration = context.end_stage(RequestContextStage.TOTAL)
        context.performance_metrics.total_duration = total_duration

        # Collect debug information if requested
        debug_info = None
        if debug:
            debug_info = {
                "query_analysis": {
                    "original_query": context.query_analysis.original_query,
                    "normalized_query": context.query_analysis.normalized_query,
                    "rewritten_query": context.query_analysis.rewritten_query,
                    "detected_language": context.query_analysis.detected_language,
                    "translations": context.query_analysis.translations,
                    "has_vector": context.query_analysis.query_vector is not None,
                    "is_simple_query": context.query_analysis.is_simple_query,
                    "boolean_ast": context.get_intermediate_result('boolean_ast'),
                    "domain": context.query_analysis.domain
                },
                "es_query": context.get_intermediate_result('es_query', {}),
                "es_response": {
                    "took_ms": es_response.get('took', 0),
                    "total_hits": total_value,
                    "max_score": max_score,
                    "shards": es_response.get('_shards', {})
                },
                "feature_flags": context.metadata.get('feature_flags', {}),
                "stage_timings": {
                    k: round(v, 2) for k, v in context.performance_metrics.stage_timings.items()
                },
                "search_params": context.metadata.get('search_params', {})
            }

        # Build result
        result = SearchResult(
            results=formatted_results,
            total=total_value,
            max_score=max_score,
            took_ms=int(total_duration),
            facets=standardized_facets,
            query_info=parsed_query.to_dict(),
            suggestions=suggestions,
            related_searches=related_searches,
            debug_info=debug_info
        )

        # Log complete performance summary
        context.log_performance_summary()

        return result

    def search_by_image(
        self,
        image_url: str,
        tenant_id: str,
        size: int = 10,
        filters: Optional[Dict[str, Any]] = None,
        range_filters: Optional[Dict[str, Any]] = None
    ) -> SearchResult:
        """
        Search by image similarity (外部友好格式).

        Args:
            image_url: URL of query image
            tenant_id: Tenant ID (required for filtering)
            size: Number of results
            filters: Exact match filters
            range_filters: Range filters for numeric fields

        Returns:
            SearchResult object with formatted results
        """
        if not self.image_embedding_field:
            raise ValueError("Image embedding field not configured")

        # Generate image embedding
        from embeddings import CLIPImageEncoder
        image_encoder = CLIPImageEncoder()
        image_vector = image_encoder.encode_image_from_url(image_url)

        if image_vector is None:
            raise ValueError(f"Failed to encode image: {image_url}")

        # Add tenant_id to filters (required)
        if filters is None:
            filters = {}
        filters['tenant_id'] = tenant_id

        # Build KNN query
        es_query = {
            "size": size,
            "knn": {
                "field": self.image_embedding_field,
                "query_vector": image_vector.tolist(),
                "k": size,
                "num_candidates": size * 10
            }
        }

        # Add _source filtering if source_fields are configured
        if self.config.query_config.source_fields:
            es_query["_source"] = {
                "includes": self.config.query_config.source_fields
            }

        if filters or range_filters:
            filter_clauses = self.query_builder._build_filters(filters, range_filters)
            if filter_clauses:
                es_query["query"] = {
                    "bool": {
                        "filter": filter_clauses
                    }
                }

        # Execute search
        es_response = self.es_client.search(
            index_name=self.config.es_index_name,
            body=es_query,
            size=size
        )

        # Extract ES hits
        es_hits = []
        if 'hits' in es_response and 'hits' in es_response['hits']:
            es_hits = es_response['hits']['hits']

        # Extract total and max_score
        total = es_response.get('hits', {}).get('total', {})
        if isinstance(total, dict):
            total_value = total.get('value', 0)
        else:
            total_value = total

        max_score = es_response.get('hits', {}).get('max_score') or 0.0

        # Format results using ResultFormatter
        formatted_results = ResultFormatter.format_search_results(es_hits, max_score)

        return SearchResult(
            results=formatted_results,
            total=total_value,
            max_score=max_score,
            took_ms=es_response.get('took', 0),
            facets=None,
            query_info={'image_url': image_url, 'search_type': 'image_similarity'},
            suggestions=[],
            related_searches=[]
        )

    def get_domain_summary(self) -> Dict[str, Any]:
        """
        Get summary of all configured domains.

        Returns:
            Dictionary with domain information
        """
        return self.query_builder.get_domain_summary()

    def get_document(self, doc_id: str) -> Optional[Dict[str, Any]]:
        """
        Get single document by ID.

        Args:
            doc_id: Document ID

        Returns:
            Document or None if not found
        """
        try:
            response = self.es_client.client.get(
                index=self.config.es_index_name,
                id=doc_id
            )
            return response.get('_source')
        except Exception as e:
            print(f"[Searcher] Failed to get document {doc_id}: {e}")
            return None

    def _standardize_facets(
        self,
        es_aggregations: Dict[str, Any],
        facet_configs: Optional[List[Union[str, Any]]],
        current_filters: Optional[Dict[str, Any]]
    ) -> Optional[List[FacetResult]]:
        """
        将 ES 聚合结果转换为标准化的分面格式(返回 Pydantic 模型)。
        
        Args:
            es_aggregations: ES 原始聚合结果
            facet_configs: 分面配置列表(str 或 FacetConfig)
            current_filters: 当前应用的过滤器
        
        Returns:
            标准化的分面结果列表(FacetResult 对象)
        """
        if not es_aggregations or not facet_configs:
            return None
        
        standardized_facets: List[FacetResult] = []
        
        for config in facet_configs:
            # 解析配置
            if isinstance(config, str):
                field = config
                facet_type = "terms"
            else:
                # FacetConfig 对象
                field = config.field
                facet_type = config.type
            
            agg_name = f"{field}_facet"
            
            if agg_name not in es_aggregations:
                continue
            
            agg_result = es_aggregations[agg_name]
            
            # 获取当前字段的选中值
            selected_values = set()
            if current_filters and field in current_filters:
                filter_value = current_filters[field]
                if isinstance(filter_value, list):
                    selected_values = set(filter_value)
                else:
                    selected_values = {filter_value}
            
            # 转换 buckets 为 FacetValue 对象
            facet_values: List[FacetValue] = []
            if 'buckets' in agg_result:
                for bucket in agg_result['buckets']:
                    value = bucket.get('key')
                    count = bucket.get('doc_count', 0)
                    
                    facet_values.append(FacetValue(
                        value=value,
                        label=str(value),
                        count=count,
                        selected=value in selected_values
                    ))
            
            # 构建 FacetResult 对象
            facet_result = FacetResult(
                field=field,
                label=self._get_field_label(field),
                type=facet_type,
                values=facet_values
            )
            
            standardized_facets.append(facet_result)
        
        return standardized_facets if standardized_facets else None

    def _get_field_label(self, field: str) -> str:
        """获取字段的显示标签"""
        # 从配置中获取字段标签
        for field_config in self.config.fields:
            if field_config.name == field:
                # 尝试获取 label 属性
                return getattr(field_config, 'label', field)
        # 如果没有配置,返回字段名
        return field