searcher.py 18.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
"""
Main Searcher module - executes search queries against Elasticsearch.

Handles query parsing, boolean expressions, ranking, and result formatting.
"""

from typing import Dict, Any, List, Optional
import time

from config import CustomerConfig
from utils.es_client import ESClient
from query import QueryParser, ParsedQuery
from indexer import MappingGenerator
from .boolean_parser import BooleanParser, QueryNode
from .es_query_builder import ESQueryBuilder
from .multilang_query_builder import MultiLanguageQueryBuilder
from .ranking_engine import RankingEngine
from context.request_context import RequestContext, RequestContextStage, create_request_context


class SearchResult:
    """Container for search results."""

    def __init__(
        self,
        hits: List[Dict[str, Any]],
        total: int,
        max_score: float,
        took_ms: int,
        aggregations: Optional[Dict[str, Any]] = None,
        query_info: Optional[Dict[str, Any]] = None
    ):
        self.hits = hits
        self.total = total
        self.max_score = max_score
        self.took_ms = took_ms
        self.aggregations = aggregations or {}
        self.query_info = query_info or {}

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary representation."""
        return {
            "hits": self.hits,
            "total": self.total,
            "max_score": self.max_score,
            "took_ms": self.took_ms,
            "aggregations": self.aggregations,
            "query_info": self.query_info
        }


class Searcher:
    """
    Main search engine class.

    Handles:
    - Query parsing and translation
    - Boolean expression parsing
    - ES query building
    - Result ranking and formatting
    """

    def __init__(
        self,
        config: CustomerConfig,
        es_client: ESClient,
        query_parser: Optional[QueryParser] = None
    ):
        """
        Initialize searcher.

        Args:
            config: Customer configuration
            es_client: Elasticsearch client
            query_parser: Query parser (created if not provided)
        """
        self.config = config
        self.es_client = es_client
        self.query_parser = query_parser or QueryParser(config)

        # Initialize components
        self.boolean_parser = BooleanParser()
        self.ranking_engine = RankingEngine(config.ranking.expression)

        # Get mapping info
        mapping_gen = MappingGenerator(config)
        self.match_fields = mapping_gen.get_match_fields_for_domain("default")
        self.text_embedding_field = mapping_gen.get_text_embedding_field()
        self.image_embedding_field = mapping_gen.get_image_embedding_field()

        # Query builder - use multi-language version
        self.query_builder = MultiLanguageQueryBuilder(
            config=config,
            index_name=config.es_index_name,
            text_embedding_field=self.text_embedding_field,
            image_embedding_field=self.image_embedding_field
        )

    def search(
        self,
        query: str,
        size: int = 10,
        from_: int = 0,
        filters: Optional[Dict[str, Any]] = None,
        min_score: Optional[float] = None,
        context: Optional[RequestContext] = None
    ) -> SearchResult:
        """
        Execute search query.

        Args:
            query: Search query string
            size: Number of results to return
            from_: Offset for pagination
            filters: Additional filters (field: value pairs)
            min_score: Minimum score threshold
            context: Request context for tracking (created if not provided)

        Returns:
            SearchResult object
        """
        # Create context if not provided (backward compatibility)
        if context is None:
            context = create_request_context()

        # Always use config defaults (these are backend configuration, not user parameters)
        enable_translation = self.config.query_config.enable_translation
        enable_embedding = self.config.query_config.enable_text_embedding
        enable_rerank = True  # Always enable reranking as it's part of the search logic

        # Start timing
        context.start_stage(RequestContextStage.TOTAL)

        context.logger.info(
            f"开始搜索请求 | 查询: '{query}' | 参数: size={size}, from_={from_}, "
            f"enable_translation={enable_translation}, enable_embedding={enable_embedding}, "
            f"enable_rerank={enable_rerank}, min_score={min_score}",
            extra={'reqid': context.reqid, 'uid': context.uid}
        )

        # Store search parameters in context
        context.metadata['search_params'] = {
            'size': size,
            'from_': from_,
            'filters': filters,
            'enable_translation': enable_translation,
            'enable_embedding': enable_embedding,
            'enable_rerank': enable_rerank,
            'min_score': min_score
        }

        context.metadata['feature_flags'] = {
            'translation_enabled': enable_translation,
            'embedding_enabled': enable_embedding,
            'rerank_enabled': enable_rerank
        }

        # Step 1: Parse query
        context.start_stage(RequestContextStage.QUERY_PARSING)
        try:
            parsed_query = self.query_parser.parse(
                query,
                generate_vector=enable_embedding,
                context=context
            )
            # Store query analysis results in context
            context.store_query_analysis(
                original_query=parsed_query.original_query,
                normalized_query=parsed_query.normalized_query,
                rewritten_query=parsed_query.rewritten_query,
                detected_language=parsed_query.detected_language,
                translations=parsed_query.translations,
                query_vector=parsed_query.query_vector.tolist() if parsed_query.query_vector is not None else None,
                domain=parsed_query.domain,
                is_simple_query=self.boolean_parser.is_simple_query(parsed_query.rewritten_query)
            )

            context.logger.info(
                f"查询解析完成 | 原查询: '{parsed_query.original_query}' | "
                f"重写后: '{parsed_query.rewritten_query}' | "
                f"语言: {parsed_query.detected_language} | "
                f"域: {parsed_query.domain} | "
                f"向量: {'是' if parsed_query.query_vector is not None else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"查询解析失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.QUERY_PARSING)

        # Step 2: Boolean parsing
        context.start_stage(RequestContextStage.BOOLEAN_PARSING)
        try:
            query_node = None
            if self.boolean_parser.is_simple_query(parsed_query.rewritten_query):
                # Simple query
                query_text = parsed_query.rewritten_query
                context.logger.debug(
                    f"简单查询 | 无布尔表达式",
                    extra={'reqid': context.reqid, 'uid': context.uid}
                )
            else:
                # Complex boolean query
                query_node = self.boolean_parser.parse(parsed_query.rewritten_query)
                query_text = parsed_query.rewritten_query
                context.store_intermediate_result('query_node', query_node)
                context.store_intermediate_result('boolean_ast', str(query_node))
                context.logger.info(
                    f"布尔表达式解析 | AST: {query_node}",
                    extra={'reqid': context.reqid, 'uid': context.uid}
                )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"布尔表达式解析失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.BOOLEAN_PARSING)

        # Step 3: Query building
        context.start_stage(RequestContextStage.QUERY_BUILDING)
        try:
            es_query = self.query_builder.build_multilang_query(
                parsed_query=parsed_query,
                query_vector=parsed_query.query_vector if enable_embedding else None,
                query_node=query_node,
                filters=filters,
                size=size,
                from_=from_,
                enable_knn=enable_embedding and parsed_query.query_vector is not None,
                min_score=min_score
            )

            # Add SPU collapse if configured
            if self.config.spu_config.enabled:
                es_query = self.query_builder.add_spu_collapse(
                    es_query,
                    self.config.spu_config.spu_field,
                    self.config.spu_config.inner_hits_size
                )

            # Add aggregations for faceted search
            if filters:
                agg_fields = [f"{k}_keyword" for k in filters.keys() if f"{k}_keyword" in [f.name for f in self.config.fields]]
                if agg_fields:
                    es_query = self.query_builder.add_aggregations(es_query, agg_fields)

            # Extract size and from from body for ES client parameters
            body_for_es = {k: v for k, v in es_query.items() if k not in ['size', 'from']}

            # Store ES query in context
            context.store_intermediate_result('es_query', es_query)
            context.store_intermediate_result('es_body_for_search', body_for_es)

            context.logger.info(
                f"ES查询构建完成 | 大小: {len(str(es_query))}字符 | "
                f"KNN: {'是' if enable_embedding and parsed_query.query_vector is not None else '否'} | "
                f"聚合: {'是' if filters else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            context.logger.debug(
                f"ES查询详情: {es_query}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"ES查询构建失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.QUERY_BUILDING)

        # Step 4: Elasticsearch search
        context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
        try:
            es_response = self.es_client.search(
                index_name=self.config.es_index_name,
                body=body_for_es,
                size=size,
                from_=from_
            )

            # Store ES response in context
            context.store_intermediate_result('es_response', es_response)

            # Extract timing from ES response
            es_took = es_response.get('took', 0)
            context.logger.info(
                f"ES搜索完成 | 耗时: {es_took}ms | "
                f"命中数: {es_response.get('hits', {}).get('total', {}).get('value', 0)} | "
                f"最高分: {es_response.get('hits', {}).get('max_score', 0):.3f}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"ES搜索执行失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)

        # Step 5: Result processing
        context.start_stage(RequestContextStage.RESULT_PROCESSING)
        try:
            hits = []
            raw_hits = []

            if 'hits' in es_response and 'hits' in es_response['hits']:
                for hit in es_response['hits']['hits']:
                    raw_hits.append(hit)

                    result_doc = {
                        '_id': hit['_id'],
                        '_score': hit['_score'],
                        '_source': hit['_source']
                    }

                    # Apply custom ranking if enabled
                    if enable_rerank:
                        base_score = hit['_score']
                        knn_score = None

                        # Check if KNN was used
                        if 'knn' in es_query:
                            # KNN score would be in the combined score
                            # For simplicity, extract from score
                            knn_score = base_score * 0.2  # Approximate based on our formula

                        custom_score = self.ranking_engine.calculate_score(
                            hit,
                            base_score,
                            knn_score
                        )
                        result_doc['_custom_score'] = custom_score
                        result_doc['_original_score'] = base_score

                    hits.append(result_doc)

                # Re-sort by custom score if reranking enabled
                if enable_rerank:
                    hits.sort(key=lambda x: x.get('_custom_score', x['_score']), reverse=True)
                    context.logger.info(
                        f"重排序完成 | 基于自定义评分表达式",
                        extra={'reqid': context.reqid, 'uid': context.uid}
                    )

            # Store intermediate results in context
            context.store_intermediate_result('raw_hits', raw_hits)
            context.store_intermediate_result('processed_hits', hits)

            # Extract total and max_score
            total = es_response.get('hits', {}).get('total', {})
            if isinstance(total, dict):
                total_value = total.get('value', 0)
            else:
                total_value = total

            max_score = es_response.get('hits', {}).get('max_score', 0.0)

            # Extract aggregations
            aggregations = es_response.get('aggregations', {})

            context.logger.info(
                f"结果处理完成 | 返回: {len(hits)}条 | 总计: {total_value}条 | "
                f"重排序: {'是' if enable_rerank else '否'}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )

        except Exception as e:
            context.set_error(e)
            context.logger.error(
                f"结果处理失败 | 错误: {str(e)}",
                extra={'reqid': context.reqid, 'uid': context.uid}
            )
            raise
        finally:
            context.end_stage(RequestContextStage.RESULT_PROCESSING)

        # End total timing and build result
        total_duration = context.end_stage(RequestContextStage.TOTAL)
        context.performance_metrics.total_duration = total_duration

        # Build result
        result = SearchResult(
            hits=hits,
            total=total_value,
            max_score=max_score,
            took_ms=int(total_duration),
            aggregations=aggregations,
            query_info=parsed_query.to_dict()
        )

        # Log complete performance summary
        context.log_performance_summary()

        return result

    def search_by_image(
        self,
        image_url: str,
        size: int = 10,
        filters: Optional[Dict[str, Any]] = None
    ) -> SearchResult:
        """
        Search by image similarity.

        Args:
            image_url: URL of query image
            size: Number of results
            filters: Additional filters

        Returns:
            SearchResult object
        """
        if not self.image_embedding_field:
            raise ValueError("Image embedding field not configured")

        # Generate image embedding
        from embeddings import CLIPImageEncoder
        image_encoder = CLIPImageEncoder()
        image_vector = image_encoder.encode_image_from_url(image_url)

        if image_vector is None:
            raise ValueError(f"Failed to encode image: {image_url}")

        # Build KNN query
        es_query = {
            "size": size,
            "knn": {
                "field": self.image_embedding_field,
                "query_vector": image_vector.tolist(),
                "k": size,
                "num_candidates": size * 10
            }
        }

        if filters:
            es_query["query"] = {
                "bool": {
                    "filter": self.query_builder._build_filters(filters)
                }
            }

        # Execute search
        es_response = self.es_client.search(
            index_name=self.config.es_index_name,
            body=es_query,
            size=size
        )

        # Process results (similar to text search)
        hits = []
        if 'hits' in es_response and 'hits' in es_response['hits']:
            for hit in es_response['hits']['hits']:
                hits.append({
                    '_id': hit['_id'],
                    '_score': hit['_score'],
                    '_source': hit['_source']
                })

        total = es_response.get('hits', {}).get('total', {})
        if isinstance(total, dict):
            total_value = total.get('value', 0)
        else:
            total_value = total

        return SearchResult(
            hits=hits,
            total=total_value,
            max_score=es_response.get('hits', {}).get('max_score', 0.0),
            took_ms=es_response.get('took', 0),
            query_info={'image_url': image_url, 'search_type': 'image_similarity'}
        )

    def get_domain_summary(self) -> Dict[str, Any]:
        """
        Get summary of all configured domains.

        Returns:
            Dictionary with domain information
        """
        return self.query_builder.get_domain_summary()

    def get_document(self, doc_id: str) -> Optional[Dict[str, Any]]:
        """
        Get single document by ID.

        Args:
            doc_id: Document ID

        Returns:
            Document or None if not found
        """
        try:
            response = self.es_client.client.get(
                index=self.config.es_index_name,
                id=doc_id
            )
            return response.get('_source')
        except Exception as e:
            print(f"[Searcher] Failed to get document {doc_id}: {e}")
            return None