demo_context_logging.py
5.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python3
"""
Demonstration of the Request Context and Logging system
This script demonstrates how the request-scoped context management
and structured logging work together to provide complete visibility
into search request processing.
"""
import time
import sys
import os
# Add the project root to Python path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Setup the environment (use the conda environment)
os.system('source /home/tw/miniconda3/etc/profile.d/conda.sh && conda activate searchengine')
def demo_request_context():
"""Demonstrate RequestContext functionality"""
print("๐ Starting Request Context and Logging Demo")
print("=" * 60)
try:
from utils.logger import get_logger, setup_logging
from context.request_context import create_request_context, RequestContextStage
# Setup logging
setup_logging(log_level="INFO", log_dir="demo_logs")
logger = get_logger("demo")
print("โ
Logging infrastructure initialized")
# Create a request context
context = create_request_context("demo123", "demo_user")
print(f"โ
Created request context: reqid={context.reqid}, uid={context.uid}")
# Simulate a complete search pipeline
with context: # Use context manager for automatic timing
logger.info("ๅผๅงๆจกๆๆ็ดข่ฏทๆฑๅค็", extra={'reqid': context.reqid, 'uid': context.uid})
# Stage 1: Query parsing
context.start_stage(RequestContextStage.QUERY_PARSING)
time.sleep(0.02) # Simulate work
# Store query analysis results
context.store_query_analysis(
original_query="็บข่ฒ้ซ่ท้ ๅ็:Nike",
normalized_query="็บข่ฒ ้ซ่ท้ ๅ็:Nike",
rewritten_query="็บข่ฒ ้ซ่ท้ ๅ็:nike",
detected_language="zh",
translations={"en": "red high heels brand:nike"},
domain="brand"
)
context.store_intermediate_result("query_vector_shape", (1024,))
context.end_stage(RequestContextStage.QUERY_PARSING)
# Stage 2: Boolean parsing
context.start_stage(RequestContextStage.BOOLEAN_PARSING)
time.sleep(0.005) # Simulate work
context.store_intermediate_result("boolean_ast", "AND(็บข่ฒ, ้ซ่ท้, BRAND:nike)")
context.end_stage(RequestContextStage.BOOLEAN_PARSING)
# Stage 3: Query building
context.start_stage(RequestContextStage.QUERY_BUILDING)
time.sleep(0.01) # Simulate work
es_query = {
"query": {"bool": {"must": [{"match": {"title": "็บข่ฒ ้ซ่ท้"}}]}},
"knn": {"field": "text_embedding", "query_vector": [0.1] * 1024}
}
context.store_intermediate_result("es_query", es_query)
context.end_stage(RequestContextStage.QUERY_BUILDING)
# Stage 4: Elasticsearch search
context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
time.sleep(0.05) # Simulate work
es_response = {
"hits": {"total": {"value": 42}, "max_score": 0.95, "hits": []},
"took": 15
}
context.store_intermediate_result("es_response", es_response)
context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
# Stage 5: Result processing
context.start_stage(RequestContextStage.RESULT_PROCESSING)
time.sleep(0.01) # Simulate work
context.store_intermediate_result("processed_hits", [
{"_id": "1", "_score": 0.95},
{"_id": "2", "_score": 0.87}
])
context.end_stage(RequestContextStage.RESULT_PROCESSING)
# Add a warning to demonstrate warning tracking
context.add_warning("ๆฅ่ฏข่ขซ้ๅ: '็บข่ฒ ้ซ่ท้ ๅ็:Nike' -> 'red high heels brand:nike'")
# Get and display summary
summary = context.get_summary()
print("\n๐ Request Summary:")
print("-" * 40)
print(f"Request ID: {summary['request_info']['reqid']}")
print(f"User ID: {summary['request_info']['uid']}")
print(f"Total Duration: {summary['performance']['total_duration_ms']:.2f}ms")
print("\nโฑ๏ธ Stage Breakdown:")
for stage, duration in summary['performance']['stage_timings_ms'].items():
percentage = summary['performance']['stage_percentages'].get(stage, 0)
print(f" {stage}: {duration:.2f}ms ({percentage}%)")
print("\n๐ Query Analysis:")
print(f" Original: '{summary['query_analysis']['original_query']}'")
print(f" Rewritten: '{summary['query_analysis']['rewritten_query']}'")
print(f" Language: {summary['query_analysis']['detected_language']}")
print(f" Domain: {summary['query_analysis']['domain']}")
print(f" Has Vector: {summary['query_analysis']['has_vector']}")
print("\n๐ Results:")
print(f" Total Hits: {summary['results']['total_hits']}")
print(f" ES Query Size: {summary['results']['es_query_size']} chars")
print("\nโ ๏ธ Warnings:")
print(f" Count: {summary['request_info']['warnings_count']}")
print("\nโ
Demo completed successfully!")
print(f"๐ Logs are available in: demo_logs/")
except Exception as e:
print(f"โ Demo failed: {e}")
import traceback
traceback.print_exc()
return False
return True
if __name__ == "__main__":
success = demo_request_context()
if success:
print("\n๐ Request Context and Logging system is ready for production!")
else:
print("\n๐ฅ Please check the errors above")
sys.exit(1)