translator.py 17.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
"""
Translation service for multi-language query support.

Supports DeepL API for high-quality translations.


#### 官方文档:
https://developers.deepl.com/api-reference/translate/request-translation
#####


"""

import requests
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional
from utils.cache import DictCache
import logging

logger = logging.getLogger(__name__)

# Try to import DEEPL_AUTH_KEY, but allow import to fail
try:
    from config.env_config import DEEPL_AUTH_KEY
except ImportError:
    DEEPL_AUTH_KEY = None


class Translator:
    """Multi-language translator using DeepL API."""

    DEEPL_API_URL = "https://api.deepl.com/v2/translate"  # Pro tier

    # Language code mapping
    LANG_CODE_MAP = {
        'zh': 'ZH',
        'en': 'EN',
        'ru': 'RU',
        'ar': 'AR',
        'ja': 'JA',
        'es': 'ES',
        'de': 'DE',
        'fr': 'FR',
        'it': 'IT',
        'pt': 'PT',
    }

    def __init__(
        self,
        api_key: Optional[str] = None,
        use_cache: bool = True,
        timeout: int = 10,
        glossary_id: Optional[str] = None,
        translation_context: Optional[str] = None
    ):
        """
        Initialize translator.

        Args:
            api_key: DeepL API key (or None to use from config/env)
            use_cache: Whether to cache translations
            timeout: Request timeout in seconds
            glossary_id: DeepL glossary ID for custom terminology (optional)
            translation_context: Context hint for translation (e.g., "e-commerce", "product search")
        """
        # Get API key from config if not provided
        if api_key is None and DEEPL_AUTH_KEY:
            api_key = DEEPL_AUTH_KEY

        self.api_key = api_key
        self.timeout = timeout
        self.use_cache = use_cache
        self.glossary_id = glossary_id
        self.translation_context = translation_context or "e-commerce product search"

        if use_cache:
            self.cache = DictCache(".cache/translations.json")
        else:
            self.cache = None
        
        # Thread pool for async translation
        self.executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix="translator")

    def translate(
        self,
        text: str,
        target_lang: str,
        source_lang: Optional[str] = None,
        context: Optional[str] = None,
        prompt: Optional[str] = None
    ) -> Optional[str]:
        """
        Translate text to target language (synchronous mode).

        Args:
            text: Text to translate
            target_lang: Target language code ('zh', 'en', 'ru', etc.)
            source_lang: Source language code (optional, auto-detect if None)
            context: Additional context for translation (overrides default context)
            prompt: Translation prompt/instruction (optional, for better translation quality)

        Returns:
            Translated text or None if translation fails
        """
        if not text or not text.strip():
            return text

        # Normalize language codes
        target_lang = target_lang.lower()
        if source_lang:
            source_lang = source_lang.lower()

        # Use provided context or default context
        translation_context = context or self.translation_context
        
        # Build cache key (include prompt in cache key if provided)
        cache_key_parts = [source_lang or 'auto', target_lang, translation_context]
        if prompt:
            cache_key_parts.append(prompt)
        cache_key_parts.append(text)
        cache_key = ':'.join(cache_key_parts)

        # Check cache (include context and prompt in cache key for accuracy)
        if self.use_cache:
            cached = self.cache.get(cache_key, category="translations")
            if cached:
                return cached

        # If no API key, return mock translation (for testing)
        if not self.api_key:
            logger.debug(f"[Translator] No API key, returning original text (mock mode)")
            return text

        # Translate using DeepL with fallback
        result = self._translate_deepl(text, target_lang, source_lang, translation_context, prompt)

        # If translation failed, try fallback to free API
        if result is None and "api.deepl.com" in self.DEEPL_API_URL:
            logger.debug(f"[Translator] Pro API failed, trying free API...")
            result = self._translate_deepl_free(text, target_lang, source_lang, translation_context, prompt)

        # If still failed, return original text with warning
        if result is None:
            logger.warning(f"[Translator] Translation failed for '{text[:50]}...', returning original text")
            result = text

        # Cache result
        if result and self.use_cache:
            self.cache.set(cache_key, result, category="translations")

        return result

    def _translate_deepl(
        self,
        text: str,
        target_lang: str,
        source_lang: Optional[str],
        context: Optional[str] = None,
        prompt: Optional[str] = None
    ) -> Optional[str]:
        """
        Translate using DeepL API with context and glossary support.
        
        Args:
            text: Text to translate
            target_lang: Target language code
            source_lang: Source language code (optional)
            context: Context hint for translation (e.g., "e-commerce product search")
        """
        # Map to DeepL language codes
        target_code = self.LANG_CODE_MAP.get(target_lang, target_lang.upper())

        headers = {
            "Authorization": f"DeepL-Auth-Key {self.api_key}",
            "Content-Type": "application/json",
        }

        # Use prompt as context parameter for DeepL API (not as text prefix)
        # According to DeepL API: context is "Additional context that can influence a translation but is not translated itself"
        # If prompt is provided, use it as context; otherwise use the default context
        api_context = prompt if prompt else context
        
        # For e-commerce, add context words to help DeepL understand the domain
        # This is especially important for single-word ambiguous terms like "车" (car vs rook)
        text_to_translate, needs_extraction = self._add_ecommerce_context(text, source_lang, api_context)

        payload = {
            "text": [text_to_translate],
            "target_lang": target_code,
        }

        if source_lang:
            source_code = self.LANG_CODE_MAP.get(source_lang, source_lang.upper())
            payload["source_lang"] = source_code

        # Add context parameter (prompt or default context)
        # Context influences translation but is not translated itself
        if api_context:
            payload["context"] = api_context

        # Add glossary if configured
        if self.glossary_id:
            payload["glossary_id"] = self.glossary_id

        # Note: DeepL API v2 supports "context" parameter for additional context
        # that influences translation but is not translated itself.
        # We use prompt as context parameter when provided.

        try:
            response = requests.post(
                self.DEEPL_API_URL,
                headers=headers,
                json=payload,
                timeout=self.timeout
            )

            if response.status_code == 200:
                data = response.json()
                if "translations" in data and len(data["translations"]) > 0:
                    translated_text = data["translations"][0]["text"]
                    # If we added context, extract just the term from the result
                    if needs_extraction:
                        translated_text = self._extract_term_from_translation(
                            translated_text, text, target_code
                        )
                    return translated_text
            else:
                logger.error(f"[Translator] DeepL API error: {response.status_code} - {response.text}")
                return None

        except requests.Timeout:
            logger.warning(f"[Translator] Translation request timed out")
            return None
        except Exception as e:
            logger.error(f"[Translator] Translation failed: {e}", exc_info=True)
            return None

    def _translate_deepl_free(
        self,
        text: str,
        target_lang: str,
        source_lang: Optional[str],
        context: Optional[str] = None,
        prompt: Optional[str] = None
    ) -> Optional[str]:
        """
        Translate using DeepL Free API.
        
        Note: Free API may not support glossary_id parameter.
        """
        # Map to DeepL language codes
        target_code = self.LANG_CODE_MAP.get(target_lang, target_lang.upper())

        headers = {
            "Authorization": f"DeepL-Auth-Key {self.api_key}",
            "Content-Type": "application/json",
        }

        # Use prompt as context parameter for DeepL API
        api_context = prompt if prompt else context
        
        payload = {
            "text": [text],
            "target_lang": target_code,
        }

        if source_lang:
            source_code = self.LANG_CODE_MAP.get(source_lang, source_lang.upper())
            payload["source_lang"] = source_code

        # Add context parameter
        if api_context:
            payload["context"] = api_context

        # Note: Free API typically doesn't support glossary_id
        # But we can still use context hints in the text

        try:
            response = requests.post(
                "https://api-free.deepl.com/v2/translate",
                headers=headers,
                json=payload,
                timeout=self.timeout
            )

            if response.status_code == 200:
                data = response.json()
                if "translations" in data and len(data["translations"]) > 0:
                    return data["translations"][0]["text"]
            else:
                logger.error(f"[Translator] DeepL Free API error: {response.status_code} - {response.text}")
                return None

        except requests.Timeout:
            logger.warning(f"[Translator] Free API request timed out")
            return None
        except Exception as e:
            logger.error(f"[Translator] Free API translation failed: {e}", exc_info=True)
            return None

    def translate_multi(
        self,
        text: str,
        target_langs: List[str],
        source_lang: Optional[str] = None,
        context: Optional[str] = None,
        async_mode: bool = True,
        prompt: Optional[str] = None
    ) -> Dict[str, Optional[str]]:
        """
        Translate text to multiple target languages.
        
        In async_mode=True (default):
        - Returns cached translations immediately if available
        - Launches async tasks for missing translations (non-blocking)
        - Returns None for missing translations (will be available in cache next time)
        
        In async_mode=False:
        - Waits for all translations to complete (blocking)

        Args:
            text: Text to translate
            target_langs: List of target language codes
            source_lang: Source language code (optional)
            context: Context hint for translation (optional)
            async_mode: If True, return cached results immediately and translate missing ones async
            prompt: Translation prompt/instruction (optional)

        Returns:
            Dictionary mapping language code to translated text (only cached results in async mode)
        """
        results = {}
        missing_langs = []
        
        # First, get cached translations
        for lang in target_langs:
            cached = self._get_cached_translation(text, lang, source_lang, context, prompt)
            if cached is not None:
                results[lang] = cached
            else:
                missing_langs.append(lang)
        
        # If async mode and there are missing translations, launch async tasks
        if async_mode and missing_langs:
            for lang in missing_langs:
                self._translate_async(text, lang, source_lang, context, prompt)
            # Return None for missing translations
            for lang in missing_langs:
                results[lang] = None
        else:
            # Synchronous mode: wait for all translations
            for lang in missing_langs:
                results[lang] = self.translate(text, lang, source_lang, context, prompt)
        
        return results
    
    def _get_cached_translation(
        self,
        text: str,
        target_lang: str,
        source_lang: Optional[str] = None,
        context: Optional[str] = None,
        prompt: Optional[str] = None
    ) -> Optional[str]:
        """Get translation from cache if available."""
        if not self.cache:
            return None
        
        translation_context = context or self.translation_context
        cache_key_parts = [source_lang or 'auto', target_lang, translation_context]
        if prompt:
            cache_key_parts.append(prompt)
        cache_key_parts.append(text)
        cache_key = ':'.join(cache_key_parts)
        return self.cache.get(cache_key, category="translations")
    
    def _translate_async(
        self,
        text: str,
        target_lang: str,
        source_lang: Optional[str] = None,
        context: Optional[str] = None,
        prompt: Optional[str] = None
    ):
        """Launch async translation task."""
        def _do_translate():
            try:
                result = self.translate(text, target_lang, source_lang, context, prompt)
                if result:
                    logger.debug(f"Async translation completed: {text} -> {target_lang}: {result}")
            except Exception as e:
                logger.warning(f"Async translation failed: {text} -> {target_lang}: {e}")
        
        self.executor.submit(_do_translate)

    def _add_ecommerce_context(
        self,
        text: str,
        source_lang: Optional[str],
        context: Optional[str]
    ) -> tuple:
        """
        Add e-commerce context to text for better disambiguation.
        
        For single-word ambiguous Chinese terms, we add context words that help
        DeepL understand this is an e-commerce/product search context.
        
        Args:
            text: Original text to translate
            source_lang: Source language code
            context: Context hint
            
        Returns:
            Tuple of (text_with_context, needs_extraction)
            - text_with_context: Text to send to DeepL
            - needs_extraction: Whether we need to extract the term from the result
        """
        # Only apply for e-commerce context and Chinese source
        if not context or "e-commerce" not in context.lower():
            return text, False
            
        if not source_lang or source_lang.lower() != 'zh':
            return text, False
            
        # For single-word queries, add context to help disambiguation
        text_stripped = text.strip()
        if len(text_stripped.split()) == 1 and len(text_stripped) <= 2:
            # Common ambiguous Chinese e-commerce terms like "车" (car vs rook)
            # We add a context phrase: "购买 [term]" (buy [term]) or "商品 [term]" (product [term])
            # This helps DeepL understand the e-commerce context
            # We'll need to extract just the term from the translation result
            context_phrase = f"购买 {text_stripped}"
            return context_phrase, True
        
        # For multi-word queries, DeepL usually has enough context
        return text, False

    def _extract_term_from_translation(
        self,
        translated_text: str,
        original_text: str,
        target_lang_code: str
    ) -> str:
        """
        Extract the actual term from a translation that included context.
        
        For example, if we translated "购买 车" (buy car) and got "buy car",
        we want to extract just "car".
        
        Args:
            translated_text: Full translation result
            original_text: Original single-word query
            target_lang_code: Target language code (EN, ZH, etc.)
            
        Returns:
            Extracted term or original translation if extraction fails
        """
        # For English target, try to extract the last word (the actual term)
        if target_lang_code == "EN":
            words = translated_text.strip().split()
            if len(words) > 1:
                # Usually the last word is the term we want
                # But we need to be smart - if it's "buy car", we want "car"
                # Common context words to skip: buy, purchase, product, item, etc.
                context_words = {"buy", "purchase", "product", "item", "commodity", "goods"}
                # Try to find the term (not a context word)
                for word in reversed(words):
                    word_lower = word.lower().rstrip('.,!?;:')
                    if word_lower not in context_words:
                        return word_lower
                # If all words are context words, return the last one
                return words[-1].lower().rstrip('.,!?;:')
        
        # For other languages or if extraction fails, return as-is
        # The user can configure a glossary for better results
        return translated_text

    def get_translation_needs(
        self,
        detected_lang: str,
        supported_langs: List[str]
    ) -> List[str]:
        """
        Determine which languages need translation.

        Args:
            detected_lang: Detected query language
            supported_langs: List of supported languages

        Returns:
            List of language codes to translate to
        """
        # If detected language is in supported list, translate to others
        if detected_lang in supported_langs:
            return [lang for lang in supported_langs if lang != detected_lang]

        # Otherwise, translate to all supported languages
        return supported_langs