spu_transformer.py
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
SPU data transformer for Shoplazza products.
Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
"""
import pandas as pd
import numpy as np
import logging
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection
from config import ConfigLoader
from config.tenant_config_loader import get_tenant_config_loader
from indexer.document_transformer import SPUDocumentTransformer
# Configure logger
logger = logging.getLogger(__name__)
class SPUTransformer:
"""Transform SPU and SKU data into SPU-level ES documents."""
def __init__(
self,
db_engine: Any,
tenant_id: str
):
"""
Initialize SPU transformer.
Args:
db_engine: SQLAlchemy database engine
tenant_id: Tenant ID for filtering data
"""
self.db_engine = db_engine
self.tenant_id = tenant_id
# Load configuration to get searchable_option_dimensions
translator = None
translation_prompts = {}
try:
config_loader = ConfigLoader()
config = config_loader.load_config()
self.searchable_option_dimensions = config.spu_config.searchable_option_dimensions
# Initialize translator if translation is enabled
if config.query_config.enable_translation:
from query.translator import Translator
translator = Translator(
api_key=config.query_config.translation_api_key,
use_cache=True, # 索引时使用缓存避免重复翻译
glossary_id=config.query_config.translation_glossary_id,
translation_context=config.query_config.translation_context
)
translation_prompts = config.query_config.translation_prompts
except Exception as e:
logger.warning(f"Failed to load config, using default: {e}")
self.searchable_option_dimensions = ['option1', 'option2', 'option3']
# Load category ID to name mapping
self.category_id_to_name = self._load_category_mapping()
# Load tenant config
tenant_config_loader = get_tenant_config_loader()
tenant_config = tenant_config_loader.get_tenant_config(tenant_id)
# Initialize document transformer
self.document_transformer = SPUDocumentTransformer(
category_id_to_name=self.category_id_to_name,
searchable_option_dimensions=self.searchable_option_dimensions,
tenant_config=tenant_config,
translator=translator,
translation_prompts=translation_prompts
)
def _load_category_mapping(self) -> Dict[str, str]:
"""
Load category ID to name mapping from database.
Returns:
Dictionary mapping category_id to category_name
"""
query = text("""
SELECT DISTINCT
category_id,
category
FROM shoplazza_product_spu
WHERE deleted = 0 AND category_id IS NOT NULL
""")
mapping = {}
with self.db_engine.connect() as conn:
result = conn.execute(query)
for row in result:
category_id = str(int(row.category_id))
category_name = row.category
if not category_name or not category_name.strip():
logger.warning(f"Category ID {category_id} has empty name, skipping")
continue
mapping[category_id] = category_name
logger.info(f"Loaded {len(mapping)} category ID to name mappings")
# Log all category mappings for debugging
if mapping:
logger.debug("Category ID mappings:")
for cid, name in sorted(mapping.items()):
logger.debug(f" {cid} -> {name}")
return mapping
def load_spu_data(self) -> pd.DataFrame:
"""
Load SPU data from MySQL.
Returns:
DataFrame with SPU data
"""
query = text("""
SELECT
id, shop_id, shoplazza_id, title, brief, description,
spu, vendor, vendor_url,
image_src, image_width, image_height, image_path, image_alt,
tags, note, category, category_id, category_google_id,
category_level, category_path,
fake_sales, display_fake_sales,
tenant_id, creator, create_time, updater, update_time, deleted
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
logger.info(f"Loaded {len(df)} SPU records for tenant_id={self.tenant_id}")
# Statistics
if len(df) > 0:
has_category_path = df['category_path'].notna().sum()
has_category = df['category'].notna().sum()
has_title = df['title'].notna().sum()
logger.info(f"SPU data statistics:")
logger.info(f" - Has title: {has_title}/{len(df)} ({100*has_title/len(df):.1f}%)")
logger.info(f" - Has category_path: {has_category_path}/{len(df)} ({100*has_category_path/len(df):.1f}%)")
logger.info(f" - Has category: {has_category}/{len(df)} ({100*has_category/len(df):.1f}%)")
# Warn if too many SPUs don't have category_path
if has_category_path < len(df) * 0.5:
logger.warning(f"Only {100*has_category_path/len(df):.1f}% of SPUs have category_path, data quality may be low")
else:
logger.warning(f"No SPU data found for tenant_id={self.tenant_id}")
# Debug: Check if there's any data for this tenant_id
debug_query = text("""
SELECT
COUNT(*) as total_count,
SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id
""")
with self.db_engine.connect() as conn:
debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
if not debug_df.empty:
total = debug_df.iloc[0]['total_count']
active = debug_df.iloc[0]['active_count']
deleted = debug_df.iloc[0]['deleted_count']
logger.debug(f"tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
# Check what tenant_ids exist in the table
tenant_check_query = text("""
SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
FROM shoplazza_product_spu
GROUP BY tenant_id
ORDER BY tenant_id
LIMIT 10
""")
with self.db_engine.connect() as conn:
tenant_df = pd.read_sql(tenant_check_query, conn)
if not tenant_df.empty:
logger.debug(f"Available tenant_ids in shoplazza_product_spu:")
for _, row in tenant_df.iterrows():
logger.debug(f" tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
return df
def load_sku_data(self) -> pd.DataFrame:
"""
Load SKU data from MySQL.
Returns:
DataFrame with SKU data
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
shoplazza_image_id, title, sku, barcode, position,
price, compare_at_price, cost_price,
option1, option2, option3,
inventory_quantity, weight, weight_unit, image_src,
wholesale_price, note, extend,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_sku
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
logger.info(f"Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
# Statistics
if len(df) > 0:
has_price = df['price'].notna().sum()
has_inventory = df['inventory_quantity'].notna().sum()
has_option1 = df['option1'].notna().sum()
has_option2 = df['option2'].notna().sum()
has_option3 = df['option3'].notna().sum()
logger.info(f"SKU data statistics:")
logger.info(f" - Has price: {has_price}/{len(df)} ({100*has_price/len(df):.1f}%)")
logger.info(f" - Has inventory: {has_inventory}/{len(df)} ({100*has_inventory/len(df):.1f}%)")
logger.info(f" - Has option1: {has_option1}/{len(df)} ({100*has_option1/len(df):.1f}%)")
logger.info(f" - Has option2: {has_option2}/{len(df)} ({100*has_option2/len(df):.1f}%)")
logger.info(f" - Has option3: {has_option3}/{len(df)} ({100*has_option3/len(df):.1f}%)")
# Warn about data quality issues
if has_price < len(df) * 0.95:
logger.warning(f"Only {100*has_price/len(df):.1f}% of SKUs have price")
return df
def load_option_data(self) -> pd.DataFrame:
"""
Load option data from MySQL.
Returns:
DataFrame with option data (name, position for each SPU)
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
position, name, `values`, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_option
WHERE tenant_id = :tenant_id AND deleted = 0
ORDER BY spu_id, position
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
logger.info(f"Loaded {len(df)} option records for tenant_id={self.tenant_id}")
# Statistics
if len(df) > 0:
unique_spus_with_options = df['spu_id'].nunique()
has_name = df['name'].notna().sum()
logger.info(f"Option data statistics:")
logger.info(f" - Unique SPUs with options: {unique_spus_with_options}")
logger.info(f" - Has name: {has_name}/{len(df)} ({100*has_name/len(df):.1f}%)")
# Warn about missing option names
if has_name < len(df):
missing = len(df) - has_name
logger.warning(f"{missing} option records are missing names")
return df
def transform_batch(self) -> List[Dict[str, Any]]:
"""
Transform SPU and SKU data into ES documents.
Returns:
List of SPU-level ES documents
"""
logger.info(f"Starting data transformation for tenant_id={self.tenant_id}")
# Load data
spu_df = self.load_spu_data()
sku_df = self.load_sku_data()
option_df = self.load_option_data()
if spu_df.empty:
logger.warning("No SPU data to transform")
return []
# Group SKUs by SPU
sku_groups = sku_df.groupby('spu_id')
logger.info(f"Grouped SKUs into {len(sku_groups)} SPU groups")
# Group options by SPU
option_groups = option_df.groupby('spu_id') if not option_df.empty else None
if option_groups:
logger.info(f"Grouped options into {len(option_groups)} SPU groups")
documents = []
skipped_count = 0
error_count = 0
for idx, spu_row in spu_df.iterrows():
spu_id = spu_row['id']
try:
# Get SKUs for this SPU
skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
# Get options for this SPU
options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
# Warn if SPU has no SKUs
if skus.empty:
logger.warning(f"SPU {spu_id} (title: {spu_row.get('title', 'N/A')}) has no SKUs")
# Transform to ES document
doc = self.document_transformer.transform_spu_to_doc(
tenant_id=self.tenant_id,
spu_row=spu_row,
skus=skus,
options=options
)
if doc:
documents.append(doc)
else:
skipped_count += 1
logger.warning(f"SPU {spu_id} transformation returned None, skipped")
except Exception as e:
error_count += 1
logger.error(f"Error transforming SPU {spu_id}: {e}", exc_info=True)
logger.info(f"Transformation complete:")
logger.info(f" - Total SPUs: {len(spu_df)}")
logger.info(f" - Successfully transformed: {len(documents)}")
logger.info(f" - Skipped: {skipped_count}")
logger.info(f" - Errors: {error_count}")
return documents