1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
1
2
3
|
"""
SPU data transformer for Shoplazza products.
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
4
|
Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
"""
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection
class SPUTransformer:
"""Transform SPU and SKU data into SPU-level ES documents."""
def __init__(
self,
db_engine: Any,
tenant_id: str
):
"""
Initialize SPU transformer.
Args:
db_engine: SQLAlchemy database engine
tenant_id: Tenant ID for filtering data
"""
self.db_engine = db_engine
self.tenant_id = tenant_id
def load_spu_data(self) -> pd.DataFrame:
"""
Load SPU data from MySQL.
Returns:
DataFrame with SPU data
"""
query = text("""
SELECT
|
5dcddc06
tangwang
索引重构
|
41
42
|
id, shop_id, shoplazza_id, title, brief, description,
spu, vendor, vendor_url,
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
43
|
image_src, image_width, image_height, image_path, image_alt,
|
5dcddc06
tangwang
索引重构
|
44
45
46
|
tags, note, category, category_id, category_google_id,
category_level, category_path,
tenant_id, creator, create_time, updater, update_time, deleted
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
47
48
49
50
51
52
53
|
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
|
8cff1628
tangwang
tenant2 1w测试数据 mo...
|
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
# Debug: Check if there's any data for this tenant_id
if len(df) == 0:
debug_query = text("""
SELECT
COUNT(*) as total_count,
SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id
""")
with self.db_engine.connect() as conn:
debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
if not debug_df.empty:
total = debug_df.iloc[0]['total_count']
active = debug_df.iloc[0]['active_count']
deleted = debug_df.iloc[0]['deleted_count']
print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
# Check what tenant_ids exist in the table
tenant_check_query = text("""
SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
FROM shoplazza_product_spu
GROUP BY tenant_id
ORDER BY tenant_id
LIMIT 10
""")
with self.db_engine.connect() as conn:
tenant_df = pd.read_sql(tenant_check_query, conn)
if not tenant_df.empty:
print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
for _, row in tenant_df.iterrows():
print(f" tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
return df
def load_sku_data(self) -> pd.DataFrame:
"""
Load SKU data from MySQL.
Returns:
DataFrame with SKU data
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
shoplazza_image_id, title, sku, barcode, position,
price, compare_at_price, cost_price,
option1, option2, option3,
inventory_quantity, weight, weight_unit, image_src,
wholesale_price, note, extend,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_sku
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
|
8cff1628
tangwang
tenant2 1w测试数据 mo...
|
113
114
|
print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
115
116
|
return df
|
5dcddc06
tangwang
索引重构
|
117
118
119
120
121
122
123
124
125
126
|
def load_option_data(self) -> pd.DataFrame:
"""
Load option data from MySQL.
Returns:
DataFrame with option data (name, position for each SPU)
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
|
bf89b597
tangwang
feat(search): ada...
|
127
|
position, name, `values`, tenant_id,
|
5dcddc06
tangwang
索引重构
|
128
129
130
131
132
133
134
135
136
137
138
139
140
|
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_option
WHERE tenant_id = :tenant_id AND deleted = 0
ORDER BY spu_id, position
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
return df
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
141
142
143
144
145
146
147
148
149
150
|
def transform_batch(self) -> List[Dict[str, Any]]:
"""
Transform SPU and SKU data into ES documents.
Returns:
List of SPU-level ES documents
"""
# Load data
spu_df = self.load_spu_data()
sku_df = self.load_sku_data()
|
5dcddc06
tangwang
索引重构
|
151
|
option_df = self.load_option_data()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
152
153
154
155
156
157
|
if spu_df.empty:
return []
# Group SKUs by SPU
sku_groups = sku_df.groupby('spu_id')
|
5dcddc06
tangwang
索引重构
|
158
159
160
|
# Group options by SPU
option_groups = option_df.groupby('spu_id') if not option_df.empty else None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
161
162
163
164
165
166
167
168
|
documents = []
for _, spu_row in spu_df.iterrows():
spu_id = spu_row['id']
# Get SKUs for this SPU
skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
|
5dcddc06
tangwang
索引重构
|
169
170
171
|
# Get options for this SPU
options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
172
|
# Transform to ES document
|
5dcddc06
tangwang
索引重构
|
173
|
doc = self._transform_spu_to_doc(spu_row, skus, options)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
174
175
176
177
178
179
180
181
|
if doc:
documents.append(doc)
return documents
def _transform_spu_to_doc(
self,
spu_row: pd.Series,
|
5dcddc06
tangwang
索引重构
|
182
183
|
skus: pd.DataFrame,
options: pd.DataFrame
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
184
185
186
187
188
189
190
|
) -> Optional[Dict[str, Any]]:
"""
Transform a single SPU row and its SKUs into an ES document.
Args:
spu_row: SPU row from database
skus: DataFrame with SKUs for this SPU
|
5dcddc06
tangwang
索引重构
|
191
|
options: DataFrame with options for this SPU
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
192
193
194
195
196
197
198
199
200
|
Returns:
ES document or None if transformation fails
"""
doc = {}
# Tenant ID (required)
doc['tenant_id'] = str(self.tenant_id)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
201
202
|
# SPU ID
doc['spu_id'] = str(spu_row['id'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
203
|
|
5dcddc06
tangwang
索引重构
|
204
|
# 文本相关性相关字段(中英文双语,暂时只填充中文)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
205
|
if pd.notna(spu_row.get('title')):
|
5dcddc06
tangwang
索引重构
|
206
207
|
doc['title_zh'] = str(spu_row['title'])
doc['title_en'] = None # 暂时设为空
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
208
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
209
|
if pd.notna(spu_row.get('brief')):
|
5dcddc06
tangwang
索引重构
|
210
211
|
doc['brief_zh'] = str(spu_row['brief'])
doc['brief_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
212
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
213
|
if pd.notna(spu_row.get('description')):
|
5dcddc06
tangwang
索引重构
|
214
215
|
doc['description_zh'] = str(spu_row['description'])
doc['description_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
216
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
217
|
if pd.notna(spu_row.get('vendor')):
|
5dcddc06
tangwang
索引重构
|
218
219
|
doc['vendor_zh'] = str(spu_row['vendor'])
doc['vendor_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
220
221
222
|
# Tags
if pd.notna(spu_row.get('tags')):
|
5dcddc06
tangwang
索引重构
|
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
# Tags是逗号分隔的字符串,需要转换为数组
tags_str = str(spu_row['tags'])
doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]
# Category相关字段
if pd.notna(spu_row.get('category_path')):
category_path = str(spu_row['category_path'])
doc['category_path_zh'] = category_path
doc['category_path_en'] = None # 暂时设为空
# 解析category_path获取多层级分类名称
path_parts = category_path.split('/')
if len(path_parts) > 0:
doc['category1_name'] = path_parts[0].strip()
if len(path_parts) > 1:
doc['category2_name'] = path_parts[1].strip()
if len(path_parts) > 2:
doc['category3_name'] = path_parts[2].strip()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
241
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
242
|
if pd.notna(spu_row.get('category')):
|
5dcddc06
tangwang
索引重构
|
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
category_name = str(spu_row['category'])
doc['category_name_zh'] = category_name
doc['category_name_en'] = None
doc['category_name'] = category_name
if pd.notna(spu_row.get('category_id')):
doc['category_id'] = str(int(spu_row['category_id']))
if pd.notna(spu_row.get('category_level')):
doc['category_level'] = int(spu_row['category_level'])
# Option名称(从option表获取)
if not options.empty:
# 按position排序获取option名称
sorted_options = options.sort_values('position')
if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
doc['option1_name'] = str(sorted_options.iloc[0]['name'])
if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
doc['option2_name'] = str(sorted_options.iloc[1]['name'])
if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
doc['option3_name'] = str(sorted_options.iloc[2]['name'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
264
265
266
267
268
269
270
271
|
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
|
5dcddc06
tangwang
索引重构
|
272
|
# Process SKUs and build specifications
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
273
|
skus_list = []
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
274
275
|
prices = []
compare_prices = []
|
5dcddc06
tangwang
索引重构
|
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
sku_prices = []
sku_weights = []
sku_weight_units = []
total_inventory = 0
specifications = []
# 构建option名称映射(position -> name)
option_name_map = {}
if not options.empty:
for _, opt_row in options.iterrows():
position = opt_row.get('position')
name = opt_row.get('name')
if pd.notna(position) and pd.notna(name):
option_name_map[int(position)] = str(name)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
290
291
|
for _, sku_row in skus.iterrows():
|
5dcddc06
tangwang
索引重构
|
292
|
sku_data = self._transform_sku_row(sku_row, option_name_map)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
293
294
|
if sku_data:
skus_list.append(sku_data)
|
5dcddc06
tangwang
索引重构
|
295
296
|
# 收集价格信息
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
297
|
if 'price' in sku_data and sku_data['price'] is not None:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
298
|
try:
|
5dcddc06
tangwang
索引重构
|
299
300
301
|
price_val = float(sku_data['price'])
prices.append(price_val)
sku_prices.append(price_val)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
302
303
|
except (ValueError, TypeError):
pass
|
5dcddc06
tangwang
索引重构
|
304
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
305
|
if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
306
|
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
307
|
compare_prices.append(float(sku_data['compare_at_price']))
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
308
309
|
except (ValueError, TypeError):
pass
|
5dcddc06
tangwang
索引重构
|
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
# 收集重量信息
if 'weight' in sku_data and sku_data['weight'] is not None:
try:
sku_weights.append(int(float(sku_data['weight'])))
except (ValueError, TypeError):
pass
if 'weight_unit' in sku_data and sku_data['weight_unit']:
sku_weight_units.append(str(sku_data['weight_unit']))
# 收集库存信息
if 'stock' in sku_data and sku_data['stock'] is not None:
try:
total_inventory += int(sku_data['stock'])
except (ValueError, TypeError):
pass
# 构建specifications(从SKU的option值和option表的name)
sku_id = str(sku_row['id'])
if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[1],
'value': str(sku_row['option1'])
})
if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[2],
'value': str(sku_row['option2'])
})
if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[3],
'value': str(sku_row['option3'])
})
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
348
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
349
|
doc['skus'] = skus_list
|
5dcddc06
tangwang
索引重构
|
350
|
doc['specifications'] = specifications
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
# Calculate price ranges
if prices:
doc['min_price'] = float(min(prices))
doc['max_price'] = float(max(prices))
else:
doc['min_price'] = 0.0
doc['max_price'] = 0.0
if compare_prices:
doc['compare_at_price'] = float(max(compare_prices))
else:
doc['compare_at_price'] = None
|
5dcddc06
tangwang
索引重构
|
365
366
367
368
369
370
371
372
373
374
375
376
377
|
# SKU扁平化字段
doc['sku_prices'] = sku_prices
doc['sku_weights'] = sku_weights
doc['sku_weight_units'] = list(set(sku_weight_units)) # 去重
doc['total_inventory'] = total_inventory
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
# Time fields - convert datetime to ISO format string for ES DATE type
if pd.notna(spu_row.get('create_time')):
create_time = spu_row['create_time']
if hasattr(create_time, 'isoformat'):
doc['create_time'] = create_time.isoformat()
else:
doc['create_time'] = str(create_time)
if pd.notna(spu_row.get('update_time')):
update_time = spu_row['update_time']
if hasattr(update_time, 'isoformat'):
doc['update_time'] = update_time.isoformat()
else:
doc['update_time'] = str(update_time)
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
392
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
393
394
|
return doc
|
5dcddc06
tangwang
索引重构
|
395
|
def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
396
|
"""
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
397
|
Transform a SKU row into a SKU object.
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
398
399
400
|
Args:
sku_row: SKU row from database
|
5dcddc06
tangwang
索引重构
|
401
|
option_name_map: Mapping from position to option name
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
402
403
|
Returns:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
404
|
SKU dictionary or None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
405
|
"""
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
406
|
sku_data = {}
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
407
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
408
409
|
# SKU ID
sku_data['sku_id'] = str(sku_row['id'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
410
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
411
412
413
|
# Price
if pd.notna(sku_row.get('price')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
414
|
sku_data['price'] = float(sku_row['price'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
415
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
416
|
sku_data['price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
417
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
418
|
sku_data['price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
419
420
421
422
|
# Compare at price
if pd.notna(sku_row.get('compare_at_price')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
423
|
sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
424
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
425
|
sku_data['compare_at_price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
426
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
427
|
sku_data['compare_at_price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
428
|
|
5dcddc06
tangwang
索引重构
|
429
|
# SKU Code
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
430
|
if pd.notna(sku_row.get('sku')):
|
5dcddc06
tangwang
索引重构
|
431
|
sku_data['sku_code'] = str(sku_row['sku'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
432
433
434
435
|
# Stock
if pd.notna(sku_row.get('inventory_quantity')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
436
|
sku_data['stock'] = int(sku_row['inventory_quantity'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
437
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
438
|
sku_data['stock'] = 0
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
439
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
440
|
sku_data['stock'] = 0
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
441
|
|
5dcddc06
tangwang
索引重构
|
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
# Weight
if pd.notna(sku_row.get('weight')):
try:
sku_data['weight'] = float(sku_row['weight'])
except (ValueError, TypeError):
sku_data['weight'] = None
else:
sku_data['weight'] = None
# Weight unit
if pd.notna(sku_row.get('weight_unit')):
sku_data['weight_unit'] = str(sku_row['weight_unit'])
# Option values
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
456
|
if pd.notna(sku_row.get('option1')):
|
5dcddc06
tangwang
索引重构
|
457
|
sku_data['option1_value'] = str(sku_row['option1'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
458
|
if pd.notna(sku_row.get('option2')):
|
5dcddc06
tangwang
索引重构
|
459
|
sku_data['option2_value'] = str(sku_row['option2'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
460
|
if pd.notna(sku_row.get('option3')):
|
5dcddc06
tangwang
索引重构
|
461
462
463
464
465
|
sku_data['option3_value'] = str(sku_row['option3'])
# Image src
if pd.notna(sku_row.get('image_src')):
sku_data['image_src'] = str(sku_row['image_src'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
466
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
467
|
return sku_data
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
|
|