Blame view

scripts/csv_to_excel_multi_variant.py 20.6 KB
acf1349c   tangwang   fake 批量导入数据的脚步 ( ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
  #!/usr/bin/env python3
  """
  Convert CSV data to Excel import template with multi-variant support.
  
  Reads CSV file (goods_with_pic.5years_congku.csv.shuf.1w) and generates Excel file
  based on the template format (商品导入模板.xlsx).
  
  Features:
  - 30% products as Single variant (S type)
  - 70% products as Multi variant (M+P type) with color, size, material options
  """
  
  import sys
  import os
  import csv
  import random
  import argparse
  import re
  from pathlib import Path
  from datetime import datetime, timedelta
  import itertools
  from openpyxl import load_workbook
  from openpyxl.styles import Alignment
  
  # Add parent directory to path
  sys.path.insert(0, str(Path(__file__).parent.parent))
  
  # Color definitions
  COLORS = [
      "Red", "Blue", "Green", "Yellow", "Black", "White", "Orange", "Purple",
      "Pink", "Brown", "Gray", "Navy", "Beige", "Cream", "Maroon", "Olive",
      "Teal", "Cyan", "Magenta", "Lime", "Indigo", "Gold", "Silver", "Bronze",
      "Coral", "Turquoise", "Violet", "Khaki", "Charcoal", "Ivory"
  ]
  
  
  def clean_value(value):
      """
      Clean and normalize value.
      
      Args:
          value: Value to clean
          
      Returns:
          Cleaned string value
      """
      if value is None:
          return ''
      value = str(value).strip()
      # Remove surrounding quotes
      if value.startswith('"') and value.endswith('"'):
          value = value[1:-1]
      return value
  
  
  def parse_csv_row(row: dict) -> dict:
      """
      Parse CSV row and extract fields.
      
      Args:
          row: CSV row dictionary
          
      Returns:
          Parsed data dictionary
      """
      return {
          'skuId': clean_value(row.get('skuId', '')),
          'name': clean_value(row.get('name', '')),
          'name_pinyin': clean_value(row.get('name_pinyin', '')),
          'create_time': clean_value(row.get('create_time', '')),
          'ruSkuName': clean_value(row.get('ruSkuName', '')),
          'enSpuName': clean_value(row.get('enSpuName', '')),
          'categoryName': clean_value(row.get('categoryName', '')),
          'supplierName': clean_value(row.get('supplierName', '')),
          'brandName': clean_value(row.get('brandName', '')),
          'file_id': clean_value(row.get('file_id', '')),
          'days_since_last_update': clean_value(row.get('days_since_last_update', '')),
          'id': clean_value(row.get('id', '')),
          'imageUrl': clean_value(row.get('imageUrl', ''))
      }
  
  
  def generate_handle(title: str) -> str:
      """
      Generate URL-friendly handle from title.
      
      Args:
          title: Product title
          
      Returns:
          URL-friendly handle (ASCII only)
      """
      # Convert to lowercase
      handle = title.lower()
      
      # Remove non-ASCII characters, keep only letters, numbers, spaces, and hyphens
      handle = re.sub(r'[^a-z0-9\s-]', '', handle)
      
      # Replace spaces and multiple hyphens with single hyphen
      handle = re.sub(r'[-\s]+', '-', handle)
      handle = handle.strip('-')
      
      # Limit length
      if len(handle) > 255:
          handle = handle[:255]
      
      return handle or 'product'
  
  
  def extract_material_from_title(title: str) -> str:
      """
      Extract material from title by taking the last word after splitting by space.
      
      按照商品标题空格分割后的最后一个字符串作为material
      例如:"消防套 塑料【英文包装】" -> 最后一个字符串是 "塑料【英文包装】"
      
      Args:
          title: Product title
          
      Returns:
          Material string (single value)
      """
      if not title:
          return 'default'
      
      # Split by spaces (只按空格分割,保持原样)
      parts = title.strip().split()
      if parts:
          # Get last part (最后一个字符串)
          material = parts[-1]
          # Remove brackets but keep content
          material = re.sub(r'[【】\[\]()()]', '', material)
          material = material.strip()
          if material:
              return material
      
      return 'default'
  
  
  def generate_single_variant_row(csv_data: dict, base_sku_id: int = 1) -> dict:
      """
      Generate Excel row for Single variant (S type) product.
      
      Args:
          csv_data: Parsed CSV row data
          base_sku_id: Base SKU ID for generating SKU code
          
      Returns:
          Dictionary mapping Excel column names to values
      """
      # Parse create_time
      try:
          created_at = datetime.strptime(csv_data['create_time'], '%Y-%m-%d %H:%M:%S')
          create_time_str = created_at.strftime('%Y-%m-%d %H:%M:%S')
      except:
          created_at = datetime.now() - timedelta(days=random.randint(1, 365))
          create_time_str = created_at.strftime('%Y-%m-%d %H:%M:%S')
      
      # Generate title - use name or enSpuName
      title = csv_data['name'] or csv_data['enSpuName'] or 'Product'
      
      # Generate handle - prefer enSpuName, then name_pinyin, then title
      handle_source = csv_data['enSpuName'] or csv_data['name_pinyin'] or title
      handle = generate_handle(handle_source)
      if handle and not handle.startswith('products/'):
          handle = f'products/{handle}'
      
      # Generate SEO fields
      seo_title = f"{title} - {csv_data['categoryName']}" if csv_data['categoryName'] else title
      seo_description = f"购买{csv_data['brandName']}{title}" if csv_data['brandName'] else title
      seo_keywords_parts = [title]
      if csv_data['categoryName']:
          seo_keywords_parts.append(csv_data['categoryName'])
      if csv_data['brandName']:
          seo_keywords_parts.append(csv_data['brandName'])
      seo_keywords = ','.join(seo_keywords_parts)
      
      # Generate tags from category and brand
      tags_parts = []
      if csv_data['categoryName']:
          tags_parts.append(csv_data['categoryName'])
      if csv_data['brandName']:
          tags_parts.append(csv_data['brandName'])
      tags = ','.join(tags_parts) if tags_parts else ''
      
      # Generate prices
      price = round(random.uniform(50, 500), 2)
      compare_at_price = round(price * random.uniform(1.2, 1.5), 2)
      cost_price = round(price * 0.6, 2)
      
      # Generate random stock
      inventory_quantity = random.randint(0, 100)
      
      # Generate random weight
      weight = round(random.uniform(0.1, 5.0), 2)
      weight_unit = 'kg'
      
      # Use skuId as SKU code
      sku_code = csv_data['skuId'] or f'SKU-{base_sku_id}'
      
      # Generate barcode
      try:
          sku_id = int(csv_data['skuId']) if csv_data['skuId'] else base_sku_id
          barcode = f"BAR{sku_id:08d}"
      except:
          barcode = f"BAR{base_sku_id:08d}"
      
      # Build description
      description = f"<p>{csv_data['name']}</p>" if csv_data['name'] else ''
      
      # Build brief (subtitle)
      brief = csv_data['name'] or ''
      
      # Excel row data
      excel_row = {
          '商品ID': '',  # Empty for new products
          '创建时间': create_time_str,
          '商品标题*': title,
          '商品属性*': 'S',  # Single variant product
          '商品副标题': brief,
          '商品描述': description,
          'SEO标题': seo_title,
          'SEO描述': seo_description,
          'SEO URL Handle': handle,
          'SEO URL 重定向': 'N',
          'SEO关键词': seo_keywords,
          '商品上架': 'Y',
          '需要物流': 'Y',
          '商品收税': 'N',
          '商品spu': '',
          '启用虚拟销量': 'N',
          '虚拟销量值': '',
          '跟踪库存': 'Y',
          '库存规则*': '1',
          '专辑名称': csv_data['categoryName'] or '',
          '标签': tags,
          '供应商名称': csv_data['supplierName'] or '',
          '供应商URL': '',
          '款式1': '',  # Empty for S type
          '款式2': '',  # Empty for S type
          '款式3': '',  # Empty for S type
          '商品售价*': price,
          '商品原价': compare_at_price,
          '成本价': cost_price,
          '商品SKU': sku_code,
          '商品重量': weight,
          '重量单位': weight_unit,
          '商品条形码': barcode,
          '商品库存': inventory_quantity,
          '尺寸信息': '',
          '原产地国别': '',
          'HS(协调制度)代码': '',
          '商品图片*': csv_data['imageUrl'] or '',
          '商品备注': '',
          '款式备注': '',
          '商品主图': csv_data['imageUrl'] or '',
      }
      
      return excel_row
  
  
  def generate_multi_variant_rows(csv_data: dict, base_sku_id: int = 1) -> list:
      """
      Generate Excel rows for Multi variant (M+P type) product.
      
      Returns a list of rows:
      - First row: M (主商品) with option names
      - Following rows: P (子款式) with option values
      
      Args:
          csv_data: Parsed CSV row data
          base_sku_id: Base SKU ID for generating SKU codes
          
      Returns:
          List of dictionaries mapping Excel column names to values
      """
      rows = []
      
      # Parse create_time
      try:
          created_at = datetime.strptime(csv_data['create_time'], '%Y-%m-%d %H:%M:%S')
          create_time_str = created_at.strftime('%Y-%m-%d %H:%M:%S')
      except:
          created_at = datetime.now() - timedelta(days=random.randint(1, 365))
          create_time_str = created_at.strftime('%Y-%m-%d %H:%M:%S')
      
      # Generate title
      title = csv_data['name'] or csv_data['enSpuName'] or 'Product'
      
      # Generate handle
      handle_source = csv_data['enSpuName'] or csv_data['name_pinyin'] or title
      handle = generate_handle(handle_source)
      if handle and not handle.startswith('products/'):
          handle = f'products/{handle}'
      
      # Generate SEO fields
      seo_title = f"{title} - {csv_data['categoryName']}" if csv_data['categoryName'] else title
      seo_description = f"购买{csv_data['brandName']}{title}" if csv_data['brandName'] else title
      seo_keywords_parts = [title]
      if csv_data['categoryName']:
          seo_keywords_parts.append(csv_data['categoryName'])
      if csv_data['brandName']:
          seo_keywords_parts.append(csv_data['brandName'])
      seo_keywords = ','.join(seo_keywords_parts)
      
      # Generate tags
      tags_parts = []
      if csv_data['categoryName']:
          tags_parts.append(csv_data['categoryName'])
      if csv_data['brandName']:
          tags_parts.append(csv_data['brandName'])
      tags = ','.join(tags_parts) if tags_parts else ''
      
      # Extract material from title (last word after splitting by space)
      material = extract_material_from_title(title)
      
      # Generate color options: randomly select 2-10 colors from COLORS list
      num_colors = random.randint(2, 10)
      selected_colors = random.sample(COLORS, min(num_colors, len(COLORS)))
      
      # Generate size options: 1-30, randomly select 4-8
      num_sizes = random.randint(4, 8)
      all_sizes = [str(i) for i in range(1, 31)]
      selected_sizes = random.sample(all_sizes, num_sizes)
      
      # Material has only one value
      materials = [material]
      
      # Generate all combinations (Cartesian product)
      variants = list(itertools.product(selected_colors, selected_sizes, materials))
      
      # Generate M row (主商品)
      description = f"<p>{csv_data['name']}</p>" if csv_data['name'] else ''
      brief = csv_data['name'] or ''
      
      m_row = {
          '商品ID': '',
          '创建时间': create_time_str,
          '商品标题*': title,
          '商品属性*': 'M',  # Main product
          '商品副标题': brief,
          '商品描述': description,
          'SEO标题': seo_title,
          'SEO描述': seo_description,
          'SEO URL Handle': handle,
          'SEO URL 重定向': 'N',
          'SEO关键词': seo_keywords,
          '商品上架': 'Y',
          '需要物流': 'Y',
          '商品收税': 'N',
          '商品spu': '',
          '启用虚拟销量': 'N',
          '虚拟销量值': '',
          '跟踪库存': 'Y',
          '库存规则*': '1',
          '专辑名称': csv_data['categoryName'] or '',
          '标签': tags,
          '供应商名称': csv_data['supplierName'] or '',
          '供应商URL': '',
          '款式1': 'color',  # Option name
          '款式2': 'size',   # Option name
          '款式3': 'material',  # Option name
          '商品售价*': '',  # Empty for M row
          '商品原价': '',
          '成本价': '',
          '商品SKU': '',  # Empty for M row
          '商品重量': '',
          '重量单位': '',
          '商品条形码': '',
          '商品库存': '',  # Empty for M row
          '尺寸信息': '',
          '原产地国别': '',
          'HS(协调制度)代码': '',
          '商品图片*': csv_data['imageUrl'] or '',  # Main product image
          '商品备注': '',
          '款式备注': '',
          '商品主图': csv_data['imageUrl'] or '',
      }
      rows.append(m_row)
      
      # Generate P rows (子款式) for each variant combination
      base_price = round(random.uniform(50, 500), 2)
      
      for variant_idx, (color, size, mat) in enumerate(variants):
          # Generate price variation (within ±20% of base)
          price = round(base_price * random.uniform(0.8, 1.2), 2)
          compare_at_price = round(price * random.uniform(1.2, 1.5), 2)
          cost_price = round(price * 0.6, 2)
          
          # Generate random stock
          inventory_quantity = random.randint(0, 100)
          
          # Generate random weight
          weight = round(random.uniform(0.1, 5.0), 2)
          weight_unit = 'kg'
          
          # Generate SKU code
          sku_code = f"{csv_data['skuId']}-{color}-{size}-{mat}" if csv_data['skuId'] else f'SKU-{base_sku_id}-{variant_idx+1}'
          
          # Generate barcode
          barcode = f"BAR{base_sku_id:08d}{variant_idx+1:03d}"
          
          p_row = {
              '商品ID': '',
              '创建时间': create_time_str,
              '商品标题*': title,  # Same as M row
              '商品属性*': 'P',  # Variant
              '商品副标题': '',  # Empty for P row
              '商品描述': '',  # Empty for P row
              'SEO标题': '',  # Empty for P row
              'SEO描述': '',  # Empty for P row
              'SEO URL Handle': '',  # Empty for P row
              'SEO URL 重定向': '',
              'SEO关键词': '',
              '商品上架': 'Y',
              '需要物流': 'Y',
              '商品收税': 'N',
              '商品spu': '',
              '启用虚拟销量': 'N',
              '虚拟销量值': '',
              '跟踪库存': 'Y',
              '库存规则*': '1',
              '专辑名称': '',  # Empty for P row
              '标签': '',  # Empty for P row
              '供应商名称': '',  # Empty for P row
              '供应商URL': '',
              '款式1': color,  # Option value
              '款式2': size,   # Option value
              '款式3': mat,    # Option value
              '商品售价*': price,
              '商品原价': compare_at_price,
              '成本价': cost_price,
              '商品SKU': sku_code,
              '商品重量': weight,
              '重量单位': weight_unit,
              '商品条形码': barcode,
              '商品库存': inventory_quantity,
              '尺寸信息': '',
              '原产地国别': '',
              'HS(协调制度)代码': '',
              '商品图片*': '',  # Empty for P row (uses main product image)
              '商品备注': '',
              '款式备注': '',
              '商品主图': '',
          }
          rows.append(p_row)
      
      return rows
  
  
  def read_csv_file(csv_file: str) -> list:
      """
      Read CSV file and return list of parsed rows.
      
      Args:
          csv_file: Path to CSV file
          
      Returns:
          List of parsed CSV data dictionaries
      """
      csv_data_list = []
      
      with open(csv_file, 'r', encoding='utf-8') as f:
          reader = csv.DictReader(f)
          for row in reader:
              parsed = parse_csv_row(row)
              csv_data_list.append(parsed)
      
      return csv_data_list
  
  
  def create_excel_from_template(template_file: str, output_file: str, excel_rows: list):
      """
      Create Excel file from template and fill with data rows.
      
      Args:
          template_file: Path to Excel template file
          output_file: Path to output Excel file
          excel_rows: List of dictionaries mapping Excel column names to values
      """
      # Load template
      wb = load_workbook(template_file)
      ws = wb.active  # Use the active sheet (Sheet4)
      
      # Find header row (row 2)
      header_row_idx = 2
      
      # Get column mapping from header row
      column_mapping = {}
      for col_idx in range(1, ws.max_column + 1):
          cell_value = ws.cell(row=header_row_idx, column=col_idx).value
          if cell_value:
              column_mapping[cell_value] = col_idx
      
      # Start writing data from row 4
      data_start_row = 4
      
      # Clear existing data rows
      last_template_row = ws.max_row
      if last_template_row >= data_start_row:
          for row in range(data_start_row, last_template_row + 1):
              for col in range(1, ws.max_column + 1):
                  ws.cell(row=row, column=col).value = None
      
      # Write data rows
      for row_idx, excel_row in enumerate(excel_rows):
          excel_row_num = data_start_row + row_idx
          
          # Write each field to corresponding column
          for field_name, col_idx in column_mapping.items():
              if field_name in excel_row:
                  cell = ws.cell(row=excel_row_num, column=col_idx)
                  value = excel_row[field_name]
                  cell.value = value
                  
                  # Set alignment
                  if isinstance(value, str):
                      cell.alignment = Alignment(vertical='top', wrap_text=True)
                  elif isinstance(value, (int, float)):
                      cell.alignment = Alignment(vertical='top')
      
      # Save workbook
      wb.save(output_file)
      print(f"Excel file created: {output_file}")
      print(f"  - Total rows: {len(excel_rows)}")
  
  
  def main():
      parser = argparse.ArgumentParser(description='Convert CSV data to Excel import template with multi-variant support')
      parser.add_argument('--csv-file', 
                         default='data/customer1/goods_with_pic.5years_congku.csv.shuf.1w',
                         help='CSV file path')
      parser.add_argument('--template', 
                         default='docs/商品导入模板.xlsx',
                         help='Excel template file path')
      parser.add_argument('--output', 
                         default='商品导入数据.xlsx',
                         help='Output Excel file path')
      parser.add_argument('--limit', 
                         type=int, 
                         default=None,
                         help='Limit number of products to process')
      parser.add_argument('--single-ratio', 
                         type=float, 
                         default=0.3,
                         help='Ratio of single variant products (default: 0.3 = 30%%)')
      parser.add_argument('--seed', 
                         type=int, 
                         default=None,
                         help='Random seed for reproducible results')
      
      args = parser.parse_args()
      
      # Set random seed if provided
      if args.seed is not None:
          random.seed(args.seed)
      
      # Check if files exist
      if not os.path.exists(args.csv_file):
          print(f"Error: CSV file not found: {args.csv_file}")
          sys.exit(1)
      
      if not os.path.exists(args.template):
          print(f"Error: Template file not found: {args.template}")
          sys.exit(1)
      
      # Read CSV file
      print(f"Reading CSV file: {args.csv_file}")
      csv_data_list = read_csv_file(args.csv_file)
      print(f"Read {len(csv_data_list)} rows from CSV")
      
      # Limit products if specified
      if args.limit:
          csv_data_list = csv_data_list[:args.limit]
          print(f"Limited to {len(csv_data_list)} products")
      
      # Generate Excel rows
      print(f"\nGenerating Excel rows...")
      print(f"  - Single variant ratio: {args.single_ratio*100:.0f}%")
      print(f"  - Multi variant ratio: {(1-args.single_ratio)*100:.0f}%")
      
      excel_rows = []
      single_count = 0
      multi_count = 0
      
      for idx, csv_data in enumerate(csv_data_list):
          # Decide if this product should be single or multi variant
          is_single = random.random() < args.single_ratio
          
          if is_single:
              # Generate single variant (S type)
              row = generate_single_variant_row(csv_data, base_sku_id=idx+1)
              excel_rows.append(row)
              single_count += 1
          else:
              # Generate multi variant (M+P type)
              rows = generate_multi_variant_rows(csv_data, base_sku_id=idx+1)
              excel_rows.extend(rows)
              multi_count += 1
      
      print(f"\nGenerated:")
      print(f"  - Single variant products: {single_count}")
      print(f"  - Multi variant products: {multi_count}")
      print(f"  - Total Excel rows: {len(excel_rows)}")
      
      # Create Excel file
      print(f"\nCreating Excel file from template: {args.template}")
      print(f"Output file: {args.output}")
      create_excel_from_template(args.template, args.output, excel_rows)
      
      print(f"\nDone! Generated {len(excel_rows)} rows in Excel file.")
  
  
  if __name__ == '__main__':
      main()