1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
1
2
3
4
5
|
"""
Result formatter for converting ES internal format to external-friendly format.
"""
from typing import List, Dict, Any, Optional
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
6
|
from .models import SpuResult, SkuResult, FacetResult, FacetValue
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
7
8
9
10
11
12
13
14
15
|
class ResultFormatter:
"""Formats ES search results to external-friendly format."""
@staticmethod
def format_search_results(
es_hits: List[Dict[str, Any]],
max_score: float = 1.0
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
16
|
) -> List[SpuResult]:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
17
|
"""
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
18
|
Convert ES hits to SpuResult list.
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
19
20
21
|
Args:
es_hits: List of ES hit dictionaries (with _id, _score, _source)
|
f0577ce4
tangwang
fix last up
|
22
|
max_score: Maximum score (unused, kept for compatibility)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
23
24
|
Returns:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
25
|
List of SpuResult objects
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
26
27
28
29
30
|
"""
results = []
for hit in es_hits:
source = hit.get('_source', {})
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
31
|
score = hit.get('_score')
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
32
|
|
f0577ce4
tangwang
fix last up
|
33
|
# Use original ES score directly (no normalization)
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
34
35
36
37
38
39
40
41
|
# Handle None score (can happen with certain query types or when score is explicitly null)
if score is None:
relevance_score = 0.0
else:
try:
relevance_score = float(score)
except (ValueError, TypeError):
relevance_score = 0.0
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
42
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
43
44
45
46
47
48
49
50
51
52
53
54
55
|
# Extract SKUs
skus = []
skus_data = source.get('skus', [])
if isinstance(skus_data, list):
for sku_entry in skus_data:
sku = SkuResult(
sku_id=str(sku_entry.get('sku_id', '')),
title=sku_entry.get('title'),
price=sku_entry.get('price'),
compare_at_price=sku_entry.get('compare_at_price'),
sku=sku_entry.get('sku'),
stock=sku_entry.get('stock', 0),
options=sku_entry.get('options')
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
56
|
)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
57
|
skus.append(sku)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
58
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
59
60
|
# Determine in_stock (any sku has stock > 0)
in_stock = any(sku.stock > 0 for sku in skus) if skus else True
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
61
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
62
63
64
|
# Build SpuResult
spu = SpuResult(
spu_id=str(source.get('spu_id', '')),
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
65
66
67
68
|
title=source.get('title'),
handle=source.get('handle'),
description=source.get('description'),
vendor=source.get('vendor'),
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
69
|
category=source.get('category'),
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
70
71
72
73
74
75
|
tags=source.get('tags'),
price=source.get('min_price'),
compare_at_price=source.get('compare_at_price'),
currency="USD", # Default currency
image_url=source.get('image_url'),
in_stock=in_stock,
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
76
|
skus=skus,
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
77
78
79
|
relevance_score=relevance_score
)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
80
|
results.append(spu)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
81
82
83
84
85
86
87
88
89
90
91
|
return results
@staticmethod
def format_facets(
es_aggregations: Dict[str, Any],
facet_configs: Optional[List[Any]] = None
) -> List[FacetResult]:
"""
Format ES aggregations to FacetResult list.
|
bf89b597
tangwang
feat(search): ada...
|
92
93
94
95
96
|
支持:
1. 普通terms聚合
2. range聚合
3. specifications嵌套聚合(按name分组,然后按value聚合)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
97
98
99
100
101
102
103
104
105
106
|
Args:
es_aggregations: ES aggregations response
facet_configs: Facet configurations (optional)
Returns:
List of FacetResult objects
"""
facets = []
for field_name, agg_data in es_aggregations.items():
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
107
|
display_field = field_name[:-6] if field_name.endswith("_facet") else field_name
|
bf89b597
tangwang
feat(search): ada...
|
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
# 处理specifications嵌套分面
if field_name == "specifications_facet" and 'by_name' in agg_data:
# specifications嵌套聚合:按name分组,每个name下有value_counts
by_name_agg = agg_data['by_name']
if 'buckets' in by_name_agg:
for name_bucket in by_name_agg['buckets']:
name = name_bucket['key']
value_counts = name_bucket.get('value_counts', {})
values = []
if 'buckets' in value_counts:
for value_bucket in value_counts['buckets']:
value = FacetValue(
value=value_bucket['key'],
label=str(value_bucket['key']),
count=value_bucket['doc_count'],
selected=False
)
values.append(value)
# 为每个name创建一个分面结果
facet = FacetResult(
field=f"specifications.{name}",
label=str(name), # 使用name作为label,如"颜色"、"尺寸"
type="terms",
values=values,
total_count=name_bucket['doc_count']
)
facets.append(facet)
continue
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
140
141
142
143
144
145
146
147
148
149
150
151
152
|
# Handle terms aggregation
if 'buckets' in agg_data:
values = []
for bucket in agg_data['buckets']:
value = FacetValue(
value=bucket['key'],
label=bucket.get('key_as_string', str(bucket['key'])),
count=bucket['doc_count'],
selected=False
)
values.append(value)
facet = FacetResult(
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
153
154
|
field=display_field,
label=display_field, # Can be enhanced with field labels
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
type="terms",
values=values,
total_count=agg_data.get('sum_other_doc_count', 0) + len(values)
)
facets.append(facet)
# Handle range aggregation
elif 'buckets' in agg_data and any('from' in b or 'to' in b for b in agg_data['buckets']):
values = []
for bucket in agg_data['buckets']:
range_key = bucket.get('key', '')
value = FacetValue(
value=range_key,
label=range_key,
count=bucket['doc_count'],
selected=False
)
values.append(value)
facet = FacetResult(
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
175
176
|
field=display_field,
label=display_field,
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
177
178
179
180
181
182
183
184
185
186
|
type="range",
values=values
)
facets.append(facet)
return facets
@staticmethod
def generate_suggestions(
query: str,
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
187
|
results: List[SpuResult]
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
) -> List[str]:
"""
Generate search suggestions.
Args:
query: Original search query
results: Search results
Returns:
List of suggestion strings (currently returns empty list)
"""
# TODO: Implement suggestion generation logic
return []
@staticmethod
def generate_related_searches(
query: str,
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
205
|
results: List[SpuResult]
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
206
207
208
209
210
211
212
213
214
215
216
217
218
|
) -> List[str]:
"""
Generate related searches.
Args:
query: Original search query
results: Search results
Returns:
List of related search strings (currently returns empty list)
"""
# TODO: Implement related search generation logic
return []
|