Blame view

embeddings/text_encoder.py 2.45 KB
be52af70   tangwang   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  """
  Text embedding encoder using BGE-M3 model.
  
  Generates 1024-dimensional vectors for text using the BGE-M3 multilingual model.
  """
  
  import sys
  import torch
  from sentence_transformers import SentenceTransformer
  import time
  import threading
  from modelscope import snapshot_download
  from transformers import AutoModel
  import os
  import numpy as np
  from typing import List, Union
  
  
  class BgeEncoder:
      """
      Singleton text encoder using BGE-M3 model.
  
      Thread-safe singleton pattern ensures only one model instance exists.
      """
      _instance = None
      _lock = threading.Lock()
  
      def __new__(cls, model_dir='Xorbits/bge-m3'):
          with cls._lock:
              if cls._instance is None:
                  cls._instance = super(BgeEncoder, cls).__new__(cls)
                  print(f"[BgeEncoder] Creating a new instance with model directory: {model_dir}")
                  cls._instance.model = SentenceTransformer(snapshot_download(model_dir))
                  print("[BgeEncoder] New instance has been created")
          return cls._instance
  
      def encode(
          self,
          sentences: Union[str, List[str]],
          normalize_embeddings: bool = True,
          device: str = 'cuda',
          batch_size: int = 32
      ) -> np.ndarray:
          """
          Encode text into embeddings.
  
          Args:
              sentences: Single string or list of strings to encode
              normalize_embeddings: Whether to normalize embeddings
              device: Device to use ('cuda' or 'cpu')
              batch_size: Batch size for encoding
  
          Returns:
              numpy array of shape (n, 1024) containing embeddings
          """
          # Move model to specified device
          if device == 'gpu':
              device = 'cuda'
  
          self.model = self.model.to(device)
  
          embeddings = self.model.encode(
              sentences,
              normalize_embeddings=normalize_embeddings,
              device=device,
              show_progress_bar=False,
              batch_size=batch_size
          )
  
          return embeddings
  
      def encode_batch(
          self,
          texts: List[str],
          batch_size: int = 32,
          device: str = 'cuda'
      ) -> np.ndarray:
          """
          Encode a batch of texts efficiently.
  
          Args:
              texts: List of texts to encode
              batch_size: Batch size for processing
              device: Device to use
  
          Returns:
              numpy array of embeddings
          """
          return self.encode(texts, batch_size=batch_size, device=device)