Blame view

demo_context_logging.py 5.73 KB
16c42787   tangwang   feat: implement r...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
  #!/usr/bin/env python3
  """
  Demonstration of the Request Context and Logging system
  
  This script demonstrates how the request-scoped context management
  and structured logging work together to provide complete visibility
  into search request processing.
  """
  
  import time
  import sys
  import os
  
  # Add the project root to Python path
  sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
  
  # Setup the environment (use the conda environment)
  os.system('source /home/tw/miniconda3/etc/profile.d/conda.sh && conda activate searchengine')
  
  def demo_request_context():
      """Demonstrate RequestContext functionality"""
      print("๐Ÿš€ Starting Request Context and Logging Demo")
      print("=" * 60)
  
      try:
          from utils.logger import get_logger, setup_logging
          from context.request_context import create_request_context, RequestContextStage
  
          # Setup logging
          setup_logging(log_level="INFO", log_dir="demo_logs")
          logger = get_logger("demo")
  
          print("โœ… Logging infrastructure initialized")
  
          # Create a request context
          context = create_request_context("demo123", "demo_user")
          print(f"โœ… Created request context: reqid={context.reqid}, uid={context.uid}")
  
          # Simulate a complete search pipeline
          with context:  # Use context manager for automatic timing
              logger.info("ๅผ€ๅง‹ๆจกๆ‹Ÿๆœ็ดข่ฏทๆฑ‚ๅค„็†", extra={'reqid': context.reqid, 'uid': context.uid})
  
              # Stage 1: Query parsing
              context.start_stage(RequestContextStage.QUERY_PARSING)
              time.sleep(0.02)  # Simulate work
  
              # Store query analysis results
              context.store_query_analysis(
                  original_query="็บข่‰ฒ้ซ˜่ทŸ้ž‹ ๅ“็‰Œ:Nike",
                  normalized_query="็บข่‰ฒ ้ซ˜่ทŸ้ž‹ ๅ“็‰Œ:Nike",
                  rewritten_query="็บข่‰ฒ ้ซ˜่ทŸ้ž‹ ๅ“็‰Œ:nike",
                  detected_language="zh",
                  translations={"en": "red high heels brand:nike"},
                  domain="brand"
              )
  
              context.store_intermediate_result("query_vector_shape", (1024,))
              context.end_stage(RequestContextStage.QUERY_PARSING)
  
              # Stage 2: Boolean parsing
              context.start_stage(RequestContextStage.BOOLEAN_PARSING)
              time.sleep(0.005)  # Simulate work
              context.store_intermediate_result("boolean_ast", "AND(็บข่‰ฒ, ้ซ˜่ทŸ้ž‹, BRAND:nike)")
              context.end_stage(RequestContextStage.BOOLEAN_PARSING)
  
              # Stage 3: Query building
              context.start_stage(RequestContextStage.QUERY_BUILDING)
              time.sleep(0.01)  # Simulate work
              es_query = {
                  "query": {"bool": {"must": [{"match": {"title": "็บข่‰ฒ ้ซ˜่ทŸ้ž‹"}}]}},
                  "knn": {"field": "text_embedding", "query_vector": [0.1] * 1024}
              }
              context.store_intermediate_result("es_query", es_query)
              context.end_stage(RequestContextStage.QUERY_BUILDING)
  
              # Stage 4: Elasticsearch search
              context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
              time.sleep(0.05)  # Simulate work
              es_response = {
                  "hits": {"total": {"value": 42}, "max_score": 0.95, "hits": []},
                  "took": 15
              }
              context.store_intermediate_result("es_response", es_response)
              context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
  
              # Stage 5: Result processing
              context.start_stage(RequestContextStage.RESULT_PROCESSING)
              time.sleep(0.01)  # Simulate work
              context.store_intermediate_result("processed_hits", [
                  {"_id": "1", "_score": 0.95},
                  {"_id": "2", "_score": 0.87}
              ])
              context.end_stage(RequestContextStage.RESULT_PROCESSING)
  
              # Add a warning to demonstrate warning tracking
              context.add_warning("ๆŸฅ่ฏข่ขซ้‡ๅ†™: '็บข่‰ฒ ้ซ˜่ทŸ้ž‹ ๅ“็‰Œ:Nike' -> 'red high heels brand:nike'")
  
          # Get and display summary
          summary = context.get_summary()
          print("\n๐Ÿ“Š Request Summary:")
          print("-" * 40)
          print(f"Request ID: {summary['request_info']['reqid']}")
          print(f"User ID: {summary['request_info']['uid']}")
          print(f"Total Duration: {summary['performance']['total_duration_ms']:.2f}ms")
          print("\nโฑ๏ธ Stage Breakdown:")
          for stage, duration in summary['performance']['stage_timings_ms'].items():
              percentage = summary['performance']['stage_percentages'].get(stage, 0)
              print(f"  {stage}: {duration:.2f}ms ({percentage}%)")
  
          print("\n๐Ÿ” Query Analysis:")
          print(f"  Original: '{summary['query_analysis']['original_query']}'")
          print(f"  Rewritten: '{summary['query_analysis']['rewritten_query']}'")
          print(f"  Language: {summary['query_analysis']['detected_language']}")
          print(f"  Domain: {summary['query_analysis']['domain']}")
          print(f"  Has Vector: {summary['query_analysis']['has_vector']}")
  
          print("\n๐Ÿ“ˆ Results:")
          print(f"  Total Hits: {summary['results']['total_hits']}")
          print(f"  ES Query Size: {summary['results']['es_query_size']} chars")
  
          print("\nโš ๏ธ Warnings:")
          print(f"  Count: {summary['request_info']['warnings_count']}")
  
          print("\nโœ… Demo completed successfully!")
          print(f"๐Ÿ“ Logs are available in: demo_logs/")
  
      except Exception as e:
          print(f"โŒ Demo failed: {e}")
          import traceback
          traceback.print_exc()
          return False
  
      return True
  
  if __name__ == "__main__":
      success = demo_request_context()
      if success:
          print("\n๐ŸŽ‰ Request Context and Logging system is ready for production!")
      else:
          print("\n๐Ÿ’ฅ Please check the errors above")
          sys.exit(1)