Blame view

indexer/spu_transformer.py 18.2 KB
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
1
2
3
  """
  SPU data transformer for Shoplazza products.
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
4
  Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  """
  
  import pandas as pd
  import numpy as np
  from typing import Dict, Any, List, Optional
  from sqlalchemy import create_engine, text
  from utils.db_connector import create_db_connection
  
  
  class SPUTransformer:
      """Transform SPU and SKU data into SPU-level ES documents."""
  
      def __init__(
          self,
          db_engine: Any,
          tenant_id: str
      ):
          """
          Initialize SPU transformer.
  
          Args:
              db_engine: SQLAlchemy database engine
              tenant_id: Tenant ID for filtering data
          """
          self.db_engine = db_engine
          self.tenant_id = tenant_id
  
      def load_spu_data(self) -> pd.DataFrame:
          """
          Load SPU data from MySQL.
  
          Returns:
              DataFrame with SPU data
          """
          query = text("""
              SELECT 
5dcddc06   tangwang   索引重构
41
42
                  id, shop_id, shoplazza_id, title, brief, description,
                  spu, vendor, vendor_url,
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
43
                  image_src, image_width, image_height, image_path, image_alt,
5dcddc06   tangwang   索引重构
44
45
46
                  tags, note, category, category_id, category_google_id,
                  category_level, category_path,
                  tenant_id, creator, create_time, updater, update_time, deleted
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
47
48
49
50
51
52
53
              FROM shoplazza_product_spu
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
8cff1628   tangwang   tenant2 1w测试数据 mo...
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
          # Debug: Check if there's any data for this tenant_id
          if len(df) == 0:
              debug_query = text("""
                  SELECT 
                      COUNT(*) as total_count,
                      SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
                      SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
                  FROM shoplazza_product_spu
                  WHERE tenant_id = :tenant_id
              """)
              with self.db_engine.connect() as conn:
                  debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
              if not debug_df.empty:
                  total = debug_df.iloc[0]['total_count']
                  active = debug_df.iloc[0]['active_count']
                  deleted = debug_df.iloc[0]['deleted_count']
                  print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
              
              # Check what tenant_ids exist in the table
              tenant_check_query = text("""
                  SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
                  FROM shoplazza_product_spu
                  GROUP BY tenant_id
                  ORDER BY tenant_id
                  LIMIT 10
              """)
              with self.db_engine.connect() as conn:
                  tenant_df = pd.read_sql(tenant_check_query, conn)
              if not tenant_df.empty:
                  print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
                  for _, row in tenant_df.iterrows():
                      print(f"  tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
          
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
          return df
  
      def load_sku_data(self) -> pd.DataFrame:
          """
          Load SKU data from MySQL.
  
          Returns:
              DataFrame with SKU data
          """
          query = text("""
              SELECT 
                  id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
                  shoplazza_image_id, title, sku, barcode, position,
                  price, compare_at_price, cost_price,
                  option1, option2, option3,
                  inventory_quantity, weight, weight_unit, image_src,
                  wholesale_price, note, extend,
                  shoplazza_created_at, shoplazza_updated_at, tenant_id,
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_sku
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
8cff1628   tangwang   tenant2 1w测试数据 mo...
113
114
          print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
          
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
115
116
          return df
  
5dcddc06   tangwang   索引重构
117
118
119
120
121
122
123
124
125
126
      def load_option_data(self) -> pd.DataFrame:
          """
          Load option data from MySQL.
  
          Returns:
              DataFrame with option data (name, position for each SPU)
          """
          query = text("""
              SELECT 
                  id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
bf89b597   tangwang   feat(search): ada...
127
                  position, name, `values`, tenant_id,
5dcddc06   tangwang   索引重构
128
129
130
131
132
133
134
135
136
137
138
139
140
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_option
              WHERE tenant_id = :tenant_id AND deleted = 0
              ORDER BY spu_id, position
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
          print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
          
          return df
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
141
142
143
144
145
146
147
148
149
150
      def transform_batch(self) -> List[Dict[str, Any]]:
          """
          Transform SPU and SKU data into ES documents.
  
          Returns:
              List of SPU-level ES documents
          """
          # Load data
          spu_df = self.load_spu_data()
          sku_df = self.load_sku_data()
5dcddc06   tangwang   索引重构
151
          option_df = self.load_option_data()
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
152
153
154
155
156
157
  
          if spu_df.empty:
              return []
  
          # Group SKUs by SPU
          sku_groups = sku_df.groupby('spu_id')
5dcddc06   tangwang   索引重构
158
159
160
          
          # Group options by SPU
          option_groups = option_df.groupby('spu_id') if not option_df.empty else None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
161
162
163
164
165
166
167
168
  
          documents = []
          for _, spu_row in spu_df.iterrows():
              spu_id = spu_row['id']
              
              # Get SKUs for this SPU
              skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
              
5dcddc06   tangwang   索引重构
169
170
171
              # Get options for this SPU
              options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
              
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
172
              # Transform to ES document
5dcddc06   tangwang   索引重构
173
              doc = self._transform_spu_to_doc(spu_row, skus, options)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
174
175
176
177
178
179
180
181
              if doc:
                  documents.append(doc)
  
          return documents
  
      def _transform_spu_to_doc(
          self,
          spu_row: pd.Series,
5dcddc06   tangwang   索引重构
182
183
          skus: pd.DataFrame,
          options: pd.DataFrame
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
184
185
186
187
188
189
190
      ) -> Optional[Dict[str, Any]]:
          """
          Transform a single SPU row and its SKUs into an ES document.
  
          Args:
              spu_row: SPU row from database
              skus: DataFrame with SKUs for this SPU
5dcddc06   tangwang   索引重构
191
              options: DataFrame with options for this SPU
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
192
193
194
195
196
197
198
199
200
  
          Returns:
              ES document or None if transformation fails
          """
          doc = {}
  
          # Tenant ID (required)
          doc['tenant_id'] = str(self.tenant_id)
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
201
202
          # SPU ID
          doc['spu_id'] = str(spu_row['id'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
203
  
5dcddc06   tangwang   索引重构
204
          # 文本相关性相关字段(中英文双语,暂时只填充中文)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
205
          if pd.notna(spu_row.get('title')):
5dcddc06   tangwang   索引重构
206
207
              doc['title_zh'] = str(spu_row['title'])
          doc['title_en'] = None  # 暂时设为空
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
208
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
209
          if pd.notna(spu_row.get('brief')):
5dcddc06   tangwang   索引重构
210
211
              doc['brief_zh'] = str(spu_row['brief'])
          doc['brief_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
212
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
213
          if pd.notna(spu_row.get('description')):
5dcddc06   tangwang   索引重构
214
215
              doc['description_zh'] = str(spu_row['description'])
          doc['description_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
216
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
217
          if pd.notna(spu_row.get('vendor')):
5dcddc06   tangwang   索引重构
218
219
              doc['vendor_zh'] = str(spu_row['vendor'])
          doc['vendor_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
220
221
222
  
          # Tags
          if pd.notna(spu_row.get('tags')):
5dcddc06   tangwang   索引重构
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
              # Tags是逗号分隔的字符串,需要转换为数组
              tags_str = str(spu_row['tags'])
              doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]
  
          # Category相关字段
          if pd.notna(spu_row.get('category_path')):
              category_path = str(spu_row['category_path'])
              doc['category_path_zh'] = category_path
              doc['category_path_en'] = None  # 暂时设为空
              
              # 解析category_path获取多层级分类名称
              path_parts = category_path.split('/')
              if len(path_parts) > 0:
                  doc['category1_name'] = path_parts[0].strip()
              if len(path_parts) > 1:
                  doc['category2_name'] = path_parts[1].strip()
              if len(path_parts) > 2:
                  doc['category3_name'] = path_parts[2].strip()
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
          elif pd.notna(spu_row.get('category')):
              # 如果category_path为空,使用category字段作为category1_name的备选
              category = str(spu_row['category'])
              doc['category_name_zh'] = category
              doc['category_name_en'] = None
              doc['category_name'] = category
              
              # 尝试从category字段解析多级分类
              if '/' in category:
                  path_parts = category.split('/')
                  if len(path_parts) > 0:
                      doc['category1_name'] = path_parts[0].strip()
                  if len(path_parts) > 1:
                      doc['category2_name'] = path_parts[1].strip()
                  if len(path_parts) > 2:
                      doc['category3_name'] = path_parts[2].strip()
              else:
                  # 如果category不包含"/",直接作为category1_name
                  doc['category1_name'] = category.strip()
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
260
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
261
          if pd.notna(spu_row.get('category')):
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
262
              # 确保category相关字段都被设置(如果前面没有设置)
5dcddc06   tangwang   索引重构
263
              category_name = str(spu_row['category'])
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
264
265
266
267
268
269
              if 'category_name_zh' not in doc:
                  doc['category_name_zh'] = category_name
              if 'category_name_en' not in doc:
                  doc['category_name_en'] = None
              if 'category_name' not in doc:
                  doc['category_name'] = category_name
5dcddc06   tangwang   索引重构
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
  
          if pd.notna(spu_row.get('category_id')):
              doc['category_id'] = str(int(spu_row['category_id']))
  
          if pd.notna(spu_row.get('category_level')):
              doc['category_level'] = int(spu_row['category_level'])
  
          # Option名称(从option表获取)
          if not options.empty:
              # 按position排序获取option名称
              sorted_options = options.sort_values('position')
              if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
                  doc['option1_name'] = str(sorted_options.iloc[0]['name'])
              if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
                  doc['option2_name'] = str(sorted_options.iloc[1]['name'])
              if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
                  doc['option3_name'] = str(sorted_options.iloc[2]['name'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
287
288
289
290
291
292
293
294
  
          # Image URL
          if pd.notna(spu_row.get('image_src')):
              image_src = str(spu_row['image_src'])
              if not image_src.startswith('http'):
                  image_src = f"//{image_src}" if image_src.startswith('//') else image_src
              doc['image_url'] = image_src
  
5dcddc06   tangwang   索引重构
295
          # Process SKUs and build specifications
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
296
          skus_list = []
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
297
298
          prices = []
          compare_prices = []
5dcddc06   tangwang   索引重构
299
300
301
302
303
304
305
306
307
308
309
310
311
312
          sku_prices = []
          sku_weights = []
          sku_weight_units = []
          total_inventory = 0
          specifications = []
  
          # 构建option名称映射(position -> name)
          option_name_map = {}
          if not options.empty:
              for _, opt_row in options.iterrows():
                  position = opt_row.get('position')
                  name = opt_row.get('name')
                  if pd.notna(position) and pd.notna(name):
                      option_name_map[int(position)] = str(name)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
313
314
  
          for _, sku_row in skus.iterrows():
5dcddc06   tangwang   索引重构
315
              sku_data = self._transform_sku_row(sku_row, option_name_map)
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
316
317
              if sku_data:
                  skus_list.append(sku_data)
5dcddc06   tangwang   索引重构
318
319
                  
                  # 收集价格信息
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
320
                  if 'price' in sku_data and sku_data['price'] is not None:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
321
                      try:
5dcddc06   tangwang   索引重构
322
323
324
                          price_val = float(sku_data['price'])
                          prices.append(price_val)
                          sku_prices.append(price_val)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
325
326
                      except (ValueError, TypeError):
                          pass
5dcddc06   tangwang   索引重构
327
                  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
328
                  if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
329
                      try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
330
                          compare_prices.append(float(sku_data['compare_at_price']))
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
331
332
                      except (ValueError, TypeError):
                          pass
5dcddc06   tangwang   索引重构
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
                  
                  # 收集重量信息
                  if 'weight' in sku_data and sku_data['weight'] is not None:
                      try:
                          sku_weights.append(int(float(sku_data['weight'])))
                      except (ValueError, TypeError):
                          pass
                  
                  if 'weight_unit' in sku_data and sku_data['weight_unit']:
                      sku_weight_units.append(str(sku_data['weight_unit']))
                  
                  # 收集库存信息
                  if 'stock' in sku_data and sku_data['stock'] is not None:
                      try:
                          total_inventory += int(sku_data['stock'])
                      except (ValueError, TypeError):
                          pass
                  
                  # 构建specifications(从SKU的option值和option表的name)
                  sku_id = str(sku_row['id'])
                  if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[1],
                          'value': str(sku_row['option1'])
                      })
                  if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[2],
                          'value': str(sku_row['option2'])
                      })
                  if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[3],
                          'value': str(sku_row['option3'])
                      })
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
371
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
372
          doc['skus'] = skus_list
5dcddc06   tangwang   索引重构
373
          doc['specifications'] = specifications
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  
          # Calculate price ranges
          if prices:
              doc['min_price'] = float(min(prices))
              doc['max_price'] = float(max(prices))
          else:
              doc['min_price'] = 0.0
              doc['max_price'] = 0.0
  
          if compare_prices:
              doc['compare_at_price'] = float(max(compare_prices))
          else:
              doc['compare_at_price'] = None
  
5dcddc06   tangwang   索引重构
388
389
390
391
392
393
394
395
396
397
398
399
400
          # SKU扁平化字段
          doc['sku_prices'] = sku_prices
          doc['sku_weights'] = sku_weights
          doc['sku_weight_units'] = list(set(sku_weight_units))  # 去重
          doc['total_inventory'] = total_inventory
  
          # Image URL
          if pd.notna(spu_row.get('image_src')):
              image_src = str(spu_row['image_src'])
              if not image_src.startswith('http'):
                  image_src = f"//{image_src}" if image_src.startswith('//') else image_src
              doc['image_url'] = image_src
  
cd3799c6   tangwang   tenant2 1w测试数据 mo...
401
402
403
404
405
406
407
408
409
410
411
412
413
414
          # Time fields - convert datetime to ISO format string for ES DATE type
          if pd.notna(spu_row.get('create_time')):
              create_time = spu_row['create_time']
              if hasattr(create_time, 'isoformat'):
                  doc['create_time'] = create_time.isoformat()
              else:
                  doc['create_time'] = str(create_time)
          
          if pd.notna(spu_row.get('update_time')):
              update_time = spu_row['update_time']
              if hasattr(update_time, 'isoformat'):
                  doc['update_time'] = update_time.isoformat()
              else:
                  doc['update_time'] = str(update_time)
cd3799c6   tangwang   tenant2 1w测试数据 mo...
415
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
416
417
          return doc
  
5dcddc06   tangwang   索引重构
418
      def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
419
          """
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
420
          Transform a SKU row into a SKU object.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
421
422
423
  
          Args:
              sku_row: SKU row from database
5dcddc06   tangwang   索引重构
424
              option_name_map: Mapping from position to option name
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
425
426
  
          Returns:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
427
              SKU dictionary or None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
428
          """
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
429
          sku_data = {}
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
430
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
431
432
          # SKU ID
          sku_data['sku_id'] = str(sku_row['id'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
433
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
434
435
436
          # Price
          if pd.notna(sku_row.get('price')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
437
                  sku_data['price'] = float(sku_row['price'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
438
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
439
                  sku_data['price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
440
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
441
              sku_data['price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
442
443
444
445
  
          # Compare at price
          if pd.notna(sku_row.get('compare_at_price')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
446
                  sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
447
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
448
                  sku_data['compare_at_price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
449
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
450
              sku_data['compare_at_price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
451
  
5dcddc06   tangwang   索引重构
452
          # SKU Code
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
453
          if pd.notna(sku_row.get('sku')):
5dcddc06   tangwang   索引重构
454
              sku_data['sku_code'] = str(sku_row['sku'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
455
456
457
458
  
          # Stock
          if pd.notna(sku_row.get('inventory_quantity')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
459
                  sku_data['stock'] = int(sku_row['inventory_quantity'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
460
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
461
                  sku_data['stock'] = 0
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
462
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
463
              sku_data['stock'] = 0
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
464
  
5dcddc06   tangwang   索引重构
465
466
467
468
469
470
471
472
473
474
475
476
477
478
          # Weight
          if pd.notna(sku_row.get('weight')):
              try:
                  sku_data['weight'] = float(sku_row['weight'])
              except (ValueError, TypeError):
                  sku_data['weight'] = None
          else:
              sku_data['weight'] = None
  
          # Weight unit
          if pd.notna(sku_row.get('weight_unit')):
              sku_data['weight_unit'] = str(sku_row['weight_unit'])
  
          # Option values
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
479
          if pd.notna(sku_row.get('option1')):
5dcddc06   tangwang   索引重构
480
              sku_data['option1_value'] = str(sku_row['option1'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
481
          if pd.notna(sku_row.get('option2')):
5dcddc06   tangwang   索引重构
482
              sku_data['option2_value'] = str(sku_row['option2'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
483
          if pd.notna(sku_row.get('option3')):
5dcddc06   tangwang   索引重构
484
              sku_data['option3_value'] = str(sku_row['option3'])
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
485
          
5dcddc06   tangwang   索引重构
486
487
488
          # Image src
          if pd.notna(sku_row.get('image_src')):
              sku_data['image_src'] = str(sku_row['image_src'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
489
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
490
          return sku_data
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...