Blame view

indexer/bulk_indexer.py 8.37 KB
be52af70   tangwang   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  """
  Bulk indexer for Elasticsearch.
  
  Handles batch indexing of documents with progress tracking and error handling.
  """
  
  from typing import List, Dict, Any, Optional
  from elasticsearch.helpers import bulk, BulkIndexError
  from utils.es_client import ESClient
  import time
  
  
  class BulkIndexer:
      """Bulk indexer for Elasticsearch with batching and error handling."""
  
      def __init__(
          self,
          es_client: ESClient,
          index_name: str,
          batch_size: int = 500,
          max_retries: int = 3
      ):
          """
          Initialize bulk indexer.
  
          Args:
              es_client: Elasticsearch client
              index_name: Target index name
              batch_size: Number of documents per batch
              max_retries: Maximum retry attempts for failed batches
          """
          self.es_client = es_client
          self.index_name = index_name
          self.batch_size = batch_size
          self.max_retries = max_retries
  
      def index_documents(
          self,
          documents: List[Dict[str, Any]],
          id_field: str = "skuId",
          show_progress: bool = True
      ) -> Dict[str, Any]:
          """
          Index documents in bulk.
  
          Args:
              documents: List of documents to index
              id_field: Field to use as document ID
              show_progress: Whether to print progress
  
          Returns:
              Dictionary with indexing statistics
          """
          total_docs = len(documents)
          success_count = 0
          failed_count = 0
          errors = []
  
          print(f"[BulkIndexer] Starting bulk indexing of {total_docs} documents...")
          start_time = time.time()
  
          # Process in batches
          for i in range(0, total_docs, self.batch_size):
              batch = documents[i:i + self.batch_size]
              batch_num = (i // self.batch_size) + 1
              total_batches = (total_docs + self.batch_size - 1) // self.batch_size
  
              if show_progress:
                  print(f"[BulkIndexer] Processing batch {batch_num}/{total_batches} "
                        f"({len(batch)} documents)...")
  
              # Prepare actions for bulk API
              actions = []
              for doc in batch:
                  action = {
                      '_index': self.index_name,
                      '_source': doc
                  }
  
                  # Use specified field as document ID if present
                  if id_field and id_field in doc:
                      action['_id'] = doc[id_field]
  
                  actions.append(action)
  
              # Try to index batch with retries
              batch_success = False
              for attempt in range(self.max_retries):
                  try:
                      success, failed = bulk(
                          self.es_client.client,
                          actions,
                          raise_on_error=False,
                          raise_on_exception=False
                      )
  
                      success_count += success
                      if failed:
                          failed_count += len(failed)
                          errors.extend(failed)
  
                      batch_success = True
                      break
  
                  except BulkIndexError as e:
                      if attempt < self.max_retries - 1:
                          print(f"[BulkIndexer] Batch {batch_num} failed, retrying... "
                                f"(attempt {attempt + 1}/{self.max_retries})")
                          time.sleep(1)
                      else:
                          print(f"[BulkIndexer] Batch {batch_num} failed after "
                                f"{self.max_retries} attempts")
                          failed_count += len(batch)
                          errors.append({
                              'batch': batch_num,
                              'error': str(e)
                          })
  
                  except Exception as e:
                      print(f"[BulkIndexer] Unexpected error in batch {batch_num}: {e}")
                      failed_count += len(batch)
                      errors.append({
                          'batch': batch_num,
                          'error': str(e)
                      })
                      break
  
          elapsed_time = time.time() - start_time
  
          # Refresh index to make documents searchable
          self.es_client.refresh(self.index_name)
  
          results = {
              'total': total_docs,
              'success': success_count,
              'failed': failed_count,
              'elapsed_time': elapsed_time,
              'docs_per_second': total_docs / elapsed_time if elapsed_time > 0 else 0,
              'errors': errors[:10]  # Keep only first 10 errors
          }
  
          print(f"[BulkIndexer] Indexing complete!")
          print(f"  - Total: {total_docs}")
          print(f"  - Success: {success_count}")
          print(f"  - Failed: {failed_count}")
          print(f"  - Time: {elapsed_time:.2f}s")
          print(f"  - Speed: {results['docs_per_second']:.2f} docs/s")
  
          return results
  
      def delete_by_query(self, query: Dict[str, Any]) -> int:
          """
          Delete documents matching a query.
  
          Args:
              query: ES query DSL
  
          Returns:
              Number of documents deleted
          """
          try:
              response = self.es_client.client.delete_by_query(
                  index=self.index_name,
                  body={"query": query}
              )
              deleted = response.get('deleted', 0)
              print(f"[BulkIndexer] Deleted {deleted} documents")
              return deleted
          except Exception as e:
              print(f"[BulkIndexer] Delete by query failed: {e}")
              return 0
  
      def update_by_query(self, query: Dict[str, Any], script: Dict[str, Any]) -> int:
          """
          Update documents matching a query.
  
          Args:
              query: ES query DSL
              script: Update script
  
          Returns:
              Number of documents updated
          """
          try:
              response = self.es_client.client.update_by_query(
                  index=self.index_name,
                  body={
                      "query": query,
                      "script": script
                  }
              )
              updated = response.get('updated', 0)
              print(f"[BulkIndexer] Updated {updated} documents")
              return updated
          except Exception as e:
              print(f"[BulkIndexer] Update by query failed: {e}")
              return 0
  
  
  class IndexingPipeline:
      """Complete indexing pipeline from source data to ES."""
  
      def __init__(
          self,
          config,
          es_client: ESClient,
          data_transformer,
          recreate_index: bool = False
      ):
          """
          Initialize indexing pipeline.
  
          Args:
              config: Customer configuration
              es_client: Elasticsearch client
              data_transformer: Data transformer instance
              recreate_index: Whether to recreate index if exists
          """
          self.config = config
          self.es_client = es_client
          self.transformer = data_transformer
          self.recreate_index = recreate_index
  
      def run(self, df, batch_size: int = 100) -> Dict[str, Any]:
          """
          Run complete indexing pipeline.
  
          Args:
              df: Source dataframe
              batch_size: Batch size for processing
  
          Returns:
              Indexing statistics
          """
          from indexer.mapping_generator import MappingGenerator
  
          # Generate and create index
          mapping_gen = MappingGenerator(self.config)
          mapping = mapping_gen.generate_mapping()
  
          index_name = self.config.es_index_name
  
          if self.recreate_index:
              if self.es_client.index_exists(index_name):
                  print(f"[IndexingPipeline] Deleting existing index: {index_name}")
                  self.es_client.delete_index(index_name)
  
          if not self.es_client.index_exists(index_name):
              print(f"[IndexingPipeline] Creating index: {index_name}")
              self.es_client.create_index(index_name, mapping)
          else:
              print(f"[IndexingPipeline] Using existing index: {index_name}")
  
          # Transform data
          print(f"[IndexingPipeline] Transforming {len(df)} documents...")
          documents = self.transformer.transform_batch(df, batch_size=batch_size)
          print(f"[IndexingPipeline] Transformed {len(documents)} documents")
  
          # Bulk index
          indexer = BulkIndexer(self.es_client, index_name, batch_size=500)
          results = indexer.index_documents(documents, id_field="skuId")
  
          return results