be52af70
tangwang
first commit
|
1
2
3
4
|
"""
Request and response models for the API.
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
5
6
7
8
9
|
from pydantic import BaseModel, Field, field_validator
from typing import List, Dict, Any, Optional, Union, Literal
class RangeFilter(BaseModel):
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
10
11
12
13
14
|
"""范围过滤器(支持数值和日期时间字符串)"""
gte: Optional[Union[float, str]] = Field(None, description="大于等于 (>=)。数值或ISO日期时间字符串")
gt: Optional[Union[float, str]] = Field(None, description="大于 (>)。数值或ISO日期时间字符串")
lte: Optional[Union[float, str]] = Field(None, description="小于等于 (<=)。数值或ISO日期时间字符串")
lt: Optional[Union[float, str]] = Field(None, description="小于 (<)。数值或ISO日期时间字符串")
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
15
16
17
18
19
20
21
22
23
24
25
|
def model_post_init(self, __context):
"""确保至少指定一个边界值"""
if not any([self.gte, self.gt, self.lte, self.lt]):
raise ValueError('至少需要指定一个范围边界(gte, gt, lte, lt)')
class Config:
json_schema_extra = {
"examples": [
{"gte": 50, "lte": 200},
{"gt": 100},
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
26
27
|
{"lt": 50},
{"gte": "2023-01-01T00:00:00Z"}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
]
}
class FacetConfig(BaseModel):
"""分面配置(简化版)"""
field: str = Field(..., description="分面字段名")
size: int = Field(10, ge=1, le=100, description="返回的分面值数量")
type: Literal["terms", "range"] = Field("terms", description="分面类型")
ranges: Optional[List[Dict[str, Any]]] = Field(
None,
description="范围分面的范围定义(仅当 type='range' 时需要)"
)
class Config:
json_schema_extra = {
"examples": [
{
"field": "categoryName_keyword",
"size": 15,
"type": "terms"
},
{
"field": "price",
"size": 4,
"type": "range",
"ranges": [
{"key": "0-50", "to": 50},
{"key": "50-100", "from": 50, "to": 100},
{"key": "100-200", "from": 100, "to": 200},
{"key": "200+", "from": 200}
]
}
]
}
|
be52af70
tangwang
first commit
|
63
64
65
|
class SearchRequest(BaseModel):
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
"""搜索请求模型(重构版)"""
# 基础搜索参数
query: str = Field(..., description="搜索查询字符串,支持布尔表达式(AND, OR, RANK, ANDNOT)")
size: int = Field(10, ge=1, le=100, description="返回结果数量")
from_: int = Field(0, ge=0, alias="from", description="分页偏移量")
# 过滤器 - 精确匹配和多值匹配
filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = Field(
None,
description="精确匹配过滤器。单值表示精确匹配,数组表示 OR 匹配(匹配任意一个值)",
json_schema_extra={
"examples": [
{
"categoryName_keyword": ["玩具", "益智玩具"],
"brandName_keyword": "乐高",
"in_stock": True
}
]
}
)
# 范围过滤器 - 数值范围
range_filters: Optional[Dict[str, RangeFilter]] = Field(
None,
description="数值范围过滤器。支持 gte, gt, lte, lt 操作符",
json_schema_extra={
"examples": [
{
"price": {"gte": 50, "lte": 200},
"days_since_last_update": {"lte": 30}
}
]
}
)
# 排序
sort_by: Optional[str] = Field(None, description="排序字段名(如 'price', 'create_time')")
sort_order: Optional[str] = Field("desc", description="排序方向: 'asc'(升序)或 'desc'(降序)")
# 分面搜索 - 简化接口
facets: Optional[List[Union[str, FacetConfig]]] = Field(
None,
description="分面配置。可以是字段名列表(使用默认配置)或详细的分面配置对象",
json_schema_extra={
"examples": [
# 简单模式:只指定字段名,使用默认配置
["categoryName_keyword", "brandName_keyword"],
# 高级模式:详细配置
[
{"field": "categoryName_keyword", "size": 15},
{
"field": "price",
"type": "range",
"ranges": [
{"key": "0-50", "to": 50},
{"key": "50-100", "from": 50, "to": 100}
]
}
]
]
}
)
# 高级选项
min_score: Optional[float] = Field(None, ge=0, description="最小相关性分数阈值")
highlight: bool = Field(False, description="是否高亮搜索关键词(暂不实现)")
debug: bool = Field(False, description="是否返回调试信息")
# 个性化参数(预留)
user_id: Optional[str] = Field(None, description="用户ID,用于个性化搜索和推荐")
session_id: Optional[str] = Field(None, description="会话ID,用于搜索分析")
|
be52af70
tangwang
first commit
|
138
139
140
|
class ImageSearchRequest(BaseModel):
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
"""图片搜索请求模型"""
image_url: str = Field(..., description="查询图片的 URL")
size: int = Field(10, ge=1, le=100, description="返回结果数量")
filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = None
range_filters: Optional[Dict[str, RangeFilter]] = None
class SearchSuggestRequest(BaseModel):
"""搜索建议请求模型(框架,暂不实现)"""
query: str = Field(..., min_length=1, description="搜索查询字符串")
size: int = Field(5, ge=1, le=20, description="返回建议数量")
types: List[Literal["query", "product", "category", "brand"]] = Field(
["query"],
description="建议类型:query(查询建议), product(商品建议), category(类目建议), brand(品牌建议)"
)
class FacetValue(BaseModel):
"""分面值"""
value: Union[str, int, float] = Field(..., description="分面值")
label: Optional[str] = Field(None, description="显示标签(如果与 value 不同)")
count: int = Field(..., description="匹配的文档数量")
selected: bool = Field(False, description="是否已选中(当前过滤器中)")
class FacetResult(BaseModel):
"""分面结果(标准化格式)"""
field: str = Field(..., description="字段名")
label: str = Field(..., description="分面显示名称")
type: Literal["terms", "range"] = Field(..., description="分面类型")
values: List[FacetValue] = Field(..., description="分面值列表")
total_count: Optional[int] = Field(None, description="该字段的总文档数")
|
be52af70
tangwang
first commit
|
173
174
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
class VariantResult(BaseModel):
"""商品变体结果"""
variant_id: str = Field(..., description="变体ID")
title: Optional[str] = Field(None, description="变体标题")
price: Optional[float] = Field(None, description="价格")
compare_at_price: Optional[float] = Field(None, description="原价")
sku: Optional[str] = Field(None, description="SKU编码")
stock: int = Field(0, description="库存数量")
options: Optional[Dict[str, Any]] = Field(None, description="选项(颜色、尺寸等)")
class ProductResult(BaseModel):
"""商品搜索结果"""
product_id: str = Field(..., description="商品ID")
title: Optional[str] = Field(None, description="商品标题")
handle: Optional[str] = Field(None, description="商品handle")
description: Optional[str] = Field(None, description="商品描述")
vendor: Optional[str] = Field(None, description="供应商/品牌")
product_type: Optional[str] = Field(None, description="商品类型")
tags: Optional[str] = Field(None, description="标签")
price: Optional[float] = Field(None, description="价格(min_price)")
compare_at_price: Optional[float] = Field(None, description="原价")
currency: str = Field("USD", description="货币单位")
image_url: Optional[str] = Field(None, description="主图URL")
in_stock: bool = Field(True, description="是否有库存")
variants: List[VariantResult] = Field(default_factory=list, description="变体列表")
|
f0577ce4
tangwang
fix last up
|
201
|
relevance_score: float = Field(..., ge=0.0, description="相关性分数(ES原始分数)")
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
202
203
|
|
be52af70
tangwang
first commit
|
204
|
class SearchResponse(BaseModel):
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
205
|
"""搜索响应模型(外部友好格式)"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
206
207
|
# 核心结果
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
208
|
results: List[ProductResult] = Field(..., description="搜索结果列表")
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
total: int = Field(..., description="匹配的总文档数")
max_score: float = Field(..., description="最高相关性分数")
# 分面搜索结果(标准化格式)
facets: Optional[List[FacetResult]] = Field(
None,
description="分面统计结果(标准化格式)"
)
# 查询信息
query_info: Dict[str, Any] = Field(
default_factory=dict,
description="查询处理信息(原始查询、改写、语言检测、翻译等)"
)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
224
225
226
|
# 推荐与建议
suggestions: List[str] = Field(default_factory=list, description="搜索建议")
related_searches: List[str] = Field(default_factory=list, description="相关搜索")
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
# 性能指标
took_ms: int = Field(..., description="搜索总耗时(毫秒)")
performance_info: Optional[Dict[str, Any]] = Field(None, description="详细性能信息")
# 调试信息
debug_info: Optional[Dict[str, Any]] = Field(None, description="调试信息(仅当 debug=True)")
class SearchSuggestResponse(BaseModel):
"""搜索建议响应模型(框架,暂不实现)"""
query: str = Field(..., description="原始查询")
suggestions: List[Dict[str, Any]] = Field(..., description="建议列表")
took_ms: int = Field(..., description="耗时(毫秒)")
|
be52af70
tangwang
first commit
|
241
242
243
244
245
246
247
248
249
250
251
252
|
class DocumentResponse(BaseModel):
"""Single document response model."""
id: str = Field(..., description="Document ID")
source: Dict[str, Any] = Field(..., description="Document source")
class HealthResponse(BaseModel):
"""Health check response model."""
status: str = Field(..., description="Service status")
elasticsearch: str = Field(..., description="Elasticsearch status")
|
be52af70
tangwang
first commit
|
253
254
255
256
257
258
|
class ErrorResponse(BaseModel):
"""Error response model."""
error: str = Field(..., description="Error message")
detail: Optional[str] = Field(None, description="Detailed error information")
|