be52af70
tangwang
first commit
|
1
2
3
4
|
"""
Elasticsearch query builder.
Converts parsed queries and search parameters into ES DSL queries.
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
5
6
7
8
|
Simplified architecture:
- filters and (text_recall or embedding_recall)
- function_score wrapper for boosting fields
|
be52af70
tangwang
first commit
|
9
10
|
"""
|
7bc756c5
tangwang
优化 ES 查询构建
|
11
|
from typing import Dict, Any, List, Optional, Union, Tuple
|
be52af70
tangwang
first commit
|
12
13
|
import numpy as np
from .boolean_parser import QueryNode
|
9f96d6f3
tangwang
短query不用语义搜索
|
14
|
from config import FunctionScoreConfig
|
be52af70
tangwang
first commit
|
15
16
17
18
19
20
21
22
23
24
|
class ESQueryBuilder:
"""Builds Elasticsearch DSL queries."""
def __init__(
self,
index_name: str,
match_fields: List[str],
text_embedding_field: Optional[str] = None,
|
13377199
tangwang
接口优化
|
25
|
image_embedding_field: Optional[str] = None,
|
9f96d6f3
tangwang
短query不用语义搜索
|
26
|
source_fields: Optional[List[str]] = None,
|
7bc756c5
tangwang
优化 ES 查询构建
|
27
|
function_score_config: Optional[FunctionScoreConfig] = None,
|
a5a6bab8
tangwang
多语言查询优化
|
28
29
|
enable_multilang_search: bool = True,
default_language: str = "zh"
|
be52af70
tangwang
first commit
|
30
31
32
33
34
35
36
37
38
|
):
"""
Initialize query builder.
Args:
index_name: ES index name
match_fields: Fields to search for text matching
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
|
13377199
tangwang
接口优化
|
39
|
source_fields: Fields to return in search results (_source includes)
|
9f96d6f3
tangwang
短query不用语义搜索
|
40
|
function_score_config: Function score configuration
|
7bc756c5
tangwang
优化 ES 查询构建
|
41
|
enable_multilang_search: Enable multi-language search using translations
|
a5a6bab8
tangwang
多语言查询优化
|
42
|
default_language: Default language to use when detection fails or returns "unknown"
|
be52af70
tangwang
first commit
|
43
44
45
46
47
|
"""
self.index_name = index_name
self.match_fields = match_fields
self.text_embedding_field = text_embedding_field
self.image_embedding_field = image_embedding_field
|
13377199
tangwang
接口优化
|
48
|
self.source_fields = source_fields
|
9f96d6f3
tangwang
短query不用语义搜索
|
49
|
self.function_score_config = function_score_config
|
7bc756c5
tangwang
优化 ES 查询构建
|
50
|
self.enable_multilang_search = enable_multilang_search
|
a5a6bab8
tangwang
多语言查询优化
|
51
|
self.default_language = default_language
|
be52af70
tangwang
first commit
|
52
|
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
def _split_filters_for_faceting(
self,
filters: Optional[Dict[str, Any]],
facet_configs: Optional[List[Any]]
) -> tuple:
"""
Split filters into conjunctive (query) and disjunctive (post_filter) based on facet configs.
Disjunctive filters (multi-select facets):
- Applied via post_filter (affects results but not aggregations)
- Allows showing other options in the same facet even when filtered
Conjunctive filters (standard facets):
- Applied in query.bool.filter (affects both results and aggregations)
- Standard drill-down behavior
Args:
filters: All filters from request
|
9a9b9ec5
tangwang
1. facet disjunctive
|
71
|
facet_configs: Facet configurations with disjunctive flags
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
72
73
74
75
76
77
78
79
80
81
|
Returns:
(conjunctive_filters, disjunctive_filters)
"""
if not filters or not facet_configs:
return filters or {}, {}
# Get fields that support multi-select
multi_select_fields = set()
for fc in facet_configs:
|
9a9b9ec5
tangwang
1. facet disjunctive
|
82
|
if getattr(fc, 'disjunctive', False):
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
# Handle specifications.xxx format
if fc.field.startswith('specifications.'):
multi_select_fields.add('specifications')
else:
multi_select_fields.add(fc.field)
# Split filters
conjunctive = {}
disjunctive = {}
for field, value in filters.items():
if field in multi_select_fields:
disjunctive[field] = value
else:
conjunctive[field] = value
return conjunctive, disjunctive
|
be52af70
tangwang
first commit
|
101
102
103
104
105
106
|
def build_query(
self,
query_text: str,
query_vector: Optional[np.ndarray] = None,
query_node: Optional[QueryNode] = None,
filters: Optional[Dict[str, Any]] = None,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
107
|
range_filters: Optional[Dict[str, Any]] = None,
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
108
|
facet_configs: Optional[List[Any]] = None,
|
be52af70
tangwang
first commit
|
109
110
111
112
113
|
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
|
7bc756c5
tangwang
优化 ES 查询构建
|
114
115
|
min_score: Optional[float] = None,
parsed_query: Optional[Any] = None
|
be52af70
tangwang
first commit
|
116
117
|
) -> Dict[str, Any]:
"""
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
118
|
Build complete ES query with post_filter support for multi-select faceting.
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
119
|
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
120
121
122
|
结构:filters and (text_recall or embedding_recall) + post_filter
- conjunctive_filters: 应用在 query.bool.filter(影响结果和聚合)
- disjunctive_filters: 应用在 post_filter(只影响结果,不影响聚合)
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
123
124
125
|
- text_recall: 文本相关性召回(中英文字段都用)
- embedding_recall: 向量召回(KNN)
- function_score: 包装召回部分,支持提权字段
|
be52af70
tangwang
first commit
|
126
127
128
129
130
|
Args:
query_text: Query text for BM25 matching
query_vector: Query embedding for KNN search
query_node: Parsed boolean expression tree
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
131
132
133
|
filters: Exact match filters
range_filters: Range filters for numeric fields (always applied in query)
facet_configs: Facet configurations (used to identify multi-select facets)
|
be52af70
tangwang
first commit
|
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
es_query = {
"size": size,
"from": from_
}
|
13377199
tangwang
接口优化
|
149
150
151
152
153
154
|
# Add _source filtering if source_fields are configured
if self.source_fields:
es_query["_source"] = {
"includes": self.source_fields
}
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
155
156
157
158
159
160
161
162
163
|
# 1. Build recall queries (text or embedding)
recall_clauses = []
# Text recall (always include if query_text exists)
if query_text:
if query_node and query_node.operator != 'TERM':
# Complex boolean query
text_query = self._build_boolean_query(query_node)
else:
|
7bc756c5
tangwang
优化 ES 查询构建
|
164
165
|
# Simple text query - use advanced should-based multi-query strategy
text_query = self._build_advanced_text_query(query_text, parsed_query)
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
166
167
168
169
170
|
recall_clauses.append(text_query)
# Embedding recall (KNN - separate from query, handled below)
has_embedding = enable_knn and query_vector is not None and self.text_embedding_field
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
171
172
173
174
175
176
177
|
# 2. Split filters for multi-select faceting
conjunctive_filters, disjunctive_filters = self._split_filters_for_faceting(
filters, facet_configs
)
# Build filter clauses for query (conjunctive filters + range filters)
filter_clauses = self._build_filters(conjunctive_filters, range_filters)
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
# 3. Build main query structure: filters and recall
if recall_clauses:
# Combine text recalls with OR logic (if multiple)
if len(recall_clauses) == 1:
recall_query = recall_clauses[0]
else:
recall_query = {
"bool": {
"should": recall_clauses,
"minimum_should_match": 1
}
}
# Wrap recall with function_score for boosting
recall_query = self._wrap_with_function_score(recall_query)
# Combine filters and recall
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
196
197
198
|
if filter_clauses:
es_query["query"] = {
"bool": {
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
199
|
"must": [recall_query],
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
200
201
|
"filter": filter_clauses
}
|
be52af70
tangwang
first commit
|
202
|
}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
203
|
else:
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
204
|
es_query["query"] = recall_query
|
be52af70
tangwang
first commit
|
205
|
else:
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
206
207
208
209
210
211
212
213
214
215
|
# No recall queries, only filters (match_all filtered)
if filter_clauses:
es_query["query"] = {
"bool": {
"must": [{"match_all": {}}],
"filter": filter_clauses
}
}
else:
es_query["query"] = {"match_all": {}}
|
be52af70
tangwang
first commit
|
216
|
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
217
218
|
# 4. Add KNN search if enabled (separate from query, ES will combine)
if has_embedding:
|
be52af70
tangwang
first commit
|
219
220
221
222
|
knn_clause = {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
223
224
|
"num_candidates": knn_num_candidates,
"boost": 0.2 # Lower boost for embedding recall
|
be52af70
tangwang
first commit
|
225
226
227
|
}
es_query["knn"] = knn_clause
|
c581becd
tangwang
feat: 实现 Multi-Se...
|
228
229
230
231
232
233
234
235
236
237
238
239
|
# 5. Add post_filter for disjunctive (multi-select) filters
if disjunctive_filters:
post_filter_clauses = self._build_filters(disjunctive_filters, None)
if post_filter_clauses:
if len(post_filter_clauses) == 1:
es_query["post_filter"] = post_filter_clauses[0]
else:
es_query["post_filter"] = {
"bool": {"filter": post_filter_clauses}
}
# 6. Add minimum score filter
|
be52af70
tangwang
first commit
|
240
241
242
243
|
if min_score is not None:
es_query["min_score"] = min_score
return es_query
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
def _wrap_with_function_score(self, query: Dict[str, Any]) -> Dict[str, Any]:
"""
Wrap query with function_score for boosting fields.
Args:
query: Base query to wrap
Returns:
Function score query or original query if no functions configured
"""
functions = self._build_score_functions()
# If no functions configured, return original query
if not functions:
return query
# Build function_score query
|
9f96d6f3
tangwang
短query不用语义搜索
|
262
263
264
|
score_mode = self.function_score_config.score_mode if self.function_score_config else "sum"
boost_mode = self.function_score_config.boost_mode if self.function_score_config else "multiply"
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
265
266
267
268
|
function_score_query = {
"function_score": {
"query": query,
"functions": functions,
|
9f96d6f3
tangwang
短query不用语义搜索
|
269
270
|
"score_mode": score_mode,
"boost_mode": boost_mode
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
271
272
273
274
275
276
277
278
279
280
281
282
283
|
}
}
return function_score_query
def _build_score_functions(self) -> List[Dict[str, Any]]:
"""
Build function_score functions from config.
Returns:
List of function score functions
"""
functions = []
|
9f96d6f3
tangwang
短query不用语义搜索
|
284
285
286
287
|
if not self.function_score_config:
return functions
config_functions = self.function_score_config.functions or []
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
for func_config in config_functions:
func_type = func_config.get("type")
if func_type == "filter_weight":
# Filter + Weight
functions.append({
"filter": func_config["filter"],
"weight": func_config.get("weight", 1.0)
})
elif func_type == "field_value_factor":
# Field Value Factor
functions.append({
"field_value_factor": {
"field": func_config["field"],
"factor": func_config.get("factor", 1.0),
"modifier": func_config.get("modifier", "none"),
"missing": func_config.get("missing", 1.0)
}
})
elif func_type == "decay":
# Decay Function (gauss/exp/linear)
decay_func = func_config.get("function", "gauss")
field = func_config["field"]
decay_params = {
"origin": func_config.get("origin", "now"),
"scale": func_config["scale"]
}
if "offset" in func_config:
decay_params["offset"] = func_config["offset"]
if "decay" in func_config:
decay_params["decay"] = func_config["decay"]
functions.append({
decay_func: {
field: decay_params
}
})
return functions
|
be52af70
tangwang
first commit
|
332
333
334
335
|
def _build_text_query(self, query_text: str) -> Dict[str, Any]:
"""
Build simple text matching query (BM25).
|
7bc756c5
tangwang
优化 ES 查询构建
|
336
|
Legacy method - kept for backward compatibility.
|
be52af70
tangwang
first commit
|
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
Args:
query_text: Query text
Returns:
ES query clause
"""
return {
"multi_match": {
"query": query_text,
"fields": self.match_fields,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": 1.0,
"_name": "base_query"
}
}
|
7bc756c5
tangwang
优化 ES 查询构建
|
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
def _get_match_fields(self, language: str) -> Tuple[List[str], List[str]]:
"""
Get match fields for a specific language.
Args:
language: Language code ('zh' or 'en')
Returns:
(all_fields, core_fields) - core_fields are for phrase/keyword queries
"""
if language == 'zh':
all_fields = [
"title_zh^3.0",
"brief_zh^1.5",
"description_zh",
"vendor_zh^1.5",
"tags",
"category_path_zh^1.5",
"category_name_zh^1.5",
"option1_values^0.5"
]
core_fields = [
"title_zh^3.0",
"brief_zh^1.5",
"vendor_zh^1.5",
"category_name_zh^1.5"
]
else: # en
all_fields = [
"title_en^3.0",
"brief_en^1.5",
"description_en",
"vendor_en^1.5",
"tags",
"category_path_en^1.5",
"category_name_en^1.5",
"option1_values^0.5"
]
core_fields = [
"title_en^3.0",
"brief_en^1.5",
"vendor_en^1.5",
"category_name_en^1.5"
]
return all_fields, core_fields
def _get_embedding_field(self, language: str) -> str:
"""Get embedding field name for a language."""
# Currently using unified embedding field
return self.text_embedding_field or "title_embedding"
def _build_advanced_text_query(self, query_text: str, parsed_query: Optional[Any] = None) -> Dict[str, Any]:
"""
Build advanced text query using should clauses with multiple query strategies.
Reference implementation:
- base_query: main query with AND operator and 75% minimum_should_match
- translation queries: lower boost (0.4) for other languages
- phrase query: for short queries (2+ tokens)
- keywords query: extracted nouns from query
- KNN query: added separately in build_query
Args:
query_text: Query text
parsed_query: ParsedQuery object with analysis results
Returns:
ES bool query with should clauses
"""
should_clauses = []
# Get query analysis from parsed_query
translations = {}
|
a5a6bab8
tangwang
多语言查询优化
|
428
|
language = self.default_language
|
7bc756c5
tangwang
优化 ES 查询构建
|
429
430
431
432
433
434
435
|
keywords = ""
token_count = 0
is_short_query = False
is_long_query = False
if parsed_query:
translations = parsed_query.translations or {}
|
a5a6bab8
tangwang
多语言查询优化
|
436
437
438
439
440
441
|
# Use default language if detected_language is None or "unknown"
detected_lang = parsed_query.detected_language
if not detected_lang or detected_lang == "unknown":
language = self.default_language
else:
language = detected_lang
|
7bc756c5
tangwang
优化 ES 查询构建
|
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
keywords = getattr(parsed_query, 'keywords', '') or ""
token_count = getattr(parsed_query, 'token_count', 0) or 0
is_short_query = getattr(parsed_query, 'is_short_query', False)
is_long_query = getattr(parsed_query, 'is_long_query', False)
# Get match fields for the detected language
match_fields, core_fields = self._get_match_fields(language)
# Tie breaker values
tie_breaker_base_query = 0.9
tie_breaker_long_query = 0.9
tie_breaker_keywords = 0.9
# 1. Base query - main query with AND operator
should_clauses.append({
"multi_match": {
"_name": "base_query",
"fields": match_fields,
"minimum_should_match": "75%",
"operator": "AND",
"query": query_text,
"tie_breaker": tie_breaker_base_query
}
})
# 2. Translation queries - lower boost (0.4) for other languages
if self.enable_multilang_search:
|
a5a6bab8
tangwang
多语言查询优化
|
469
|
if language != 'zh' and translations.get('zh'):
|
7bc756c5
tangwang
优化 ES 查询构建
|
470
471
472
473
474
475
476
477
478
479
480
481
482
|
zh_fields, _ = self._get_match_fields('zh')
should_clauses.append({
"multi_match": {
"query": translations['zh'],
"fields": zh_fields,
"operator": "AND",
"minimum_should_match": "75%",
"tie_breaker": tie_breaker_base_query,
"boost": 0.4,
"_name": "base_query_trans_zh"
}
})
|
a5a6bab8
tangwang
多语言查询优化
|
483
|
if language != 'en' and translations.get('en'):
|
7bc756c5
tangwang
优化 ES 查询构建
|
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
|
en_fields, _ = self._get_match_fields('en')
should_clauses.append({
"multi_match": {
"query": translations['en'],
"fields": en_fields,
"operator": "AND",
"minimum_should_match": "75%",
"tie_breaker": tie_breaker_base_query,
"boost": 0.4,
"_name": "base_query_trans_en"
}
})
# 3. Long query - add a query with lower minimum_should_match
# Currently disabled (False condition in reference)
if False and is_long_query:
boost = 0.5 * pow(min(1.0, token_count / 10.0), 0.9)
minimum_should_match = "70%"
should_clauses.append({
"multi_match": {
"query": query_text,
"fields": match_fields,
"minimum_should_match": minimum_should_match,
"boost": boost,
"tie_breaker": tie_breaker_long_query,
"_name": "long_query"
}
})
# 4. Short query - add phrase query
ENABLE_PHRASE_QUERY = True
if ENABLE_PHRASE_QUERY and token_count >= 2 and is_short_query:
query_length = len(query_text)
slop = 0 if query_length < 3 else 1 if query_length < 5 else 2
should_clauses.append({
"multi_match": {
"query": query_text,
"fields": core_fields,
"type": "phrase",
"slop": slop,
"boost": 1.0,
"_name": "phrase_query"
}
})
# 5. Keywords query - extracted nouns from query
elif keywords and len(keywords.split()) <= 2 and 2 * len(keywords.replace(' ', '')) <= len(query_text):
should_clauses.append({
"multi_match": {
"query": keywords,
"fields": core_fields,
"operator": "AND",
"tie_breaker": tie_breaker_keywords,
"boost": 0.1,
"_name": "keywords_query"
}
})
# Return bool query with should clauses
if len(should_clauses) == 1:
return should_clauses[0]
return {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
}
|
be52af70
tangwang
first commit
|
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
|
def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
"""
Build query from boolean expression tree.
Args:
node: Query tree node
Returns:
ES query clause
"""
if node.operator == 'TERM':
# Leaf node - simple text query
return self._build_text_query(node.value)
elif node.operator == 'AND':
# All terms must match
return {
"bool": {
"must": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
elif node.operator == 'OR':
# Any term must match
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
],
"minimum_should_match": 1
}
}
elif node.operator == 'ANDNOT':
# First term must match, second must not
if len(node.terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query(node.terms[0])],
"must_not": [self._build_boolean_query(node.terms[1])]
}
}
else:
return self._build_boolean_query(node.terms[0])
elif node.operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
return {
"bool": {
"should": [
self._build_boolean_query(term)
for term in node.terms
]
}
}
else:
# Unknown operator
return {"match_all": {}}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
617
618
619
|
def _build_filters(
self,
filters: Optional[Dict[str, Any]] = None,
|
43f1139f
tangwang
refactor: ES查询结构重...
|
620
|
range_filters: Optional[Dict[str, 'RangeFilter']] = None
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
621
|
) -> List[Dict[str, Any]]:
|
be52af70
tangwang
first commit
|
622
|
"""
|
43f1139f
tangwang
refactor: ES查询结构重...
|
623
|
构建过滤子句。
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
624
|
|
be52af70
tangwang
first commit
|
625
|
Args:
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
626
|
filters: 精确匹配过滤器字典
|
43f1139f
tangwang
refactor: ES查询结构重...
|
627
|
range_filters: 范围过滤器(Dict[str, RangeFilter],RangeFilter 是 Pydantic 模型)
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
628
|
|
be52af70
tangwang
first commit
|
629
|
Returns:
|
43f1139f
tangwang
refactor: ES查询结构重...
|
630
|
ES filter 子句列表
|
be52af70
tangwang
first commit
|
631
632
|
"""
filter_clauses = []
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
633
634
635
636
|
# 1. 处理精确匹配过滤
if filters:
for field, value in filters.items():
|
f7d3cf70
tangwang
更新文档
|
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
|
# 特殊处理:specifications 嵌套过滤
if field == "specifications":
if isinstance(value, dict):
# 单个规格过滤:{"name": "color", "value": "green"}
name = value.get("name")
spec_value = value.get("value")
if name and spec_value:
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": spec_value}}
]
}
}
}
})
elif isinstance(value, list):
|
85f08823
tangwang
过滤逻辑
|
658
659
660
661
662
|
# 多个规格过滤:按 name 分组,相同维度 OR,不同维度 AND
# 例如:[{"name": "size", "value": "3"}, {"name": "size", "value": "4"}, {"name": "color", "value": "green"}]
# 应该生成:(size=3 OR size=4) AND color=green
from collections import defaultdict
specs_by_name = defaultdict(list)
|
f7d3cf70
tangwang
更新文档
|
663
664
665
666
667
|
for spec in value:
if isinstance(spec, dict):
name = spec.get("name")
spec_value = spec.get("value")
if name and spec_value:
|
85f08823
tangwang
过滤逻辑
|
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
|
specs_by_name[name].append(spec_value)
# 为每个 name 维度生成一个过滤子句
for name, values in specs_by_name.items():
if len(values) == 1:
# 单个值,直接生成 term 查询
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": values[0]}}
]
|
f7d3cf70
tangwang
更新文档
|
683
684
|
}
}
|
85f08823
tangwang
过滤逻辑
|
685
686
687
688
689
690
691
692
693
694
695
696
697
|
}
})
else:
# 多个值,使用 should (OR) 连接
should_clauses = []
for spec_value in values:
should_clauses.append({
"bool": {
"must": [
{"term": {"specifications.name": name}},
{"term": {"specifications.value": spec_value}}
]
}
|
f7d3cf70
tangwang
更新文档
|
698
|
})
|
85f08823
tangwang
过滤逻辑
|
699
700
701
702
703
704
705
706
707
708
709
|
filter_clauses.append({
"nested": {
"path": "specifications",
"query": {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
}
}
})
|
f7d3cf70
tangwang
更新文档
|
710
711
712
|
continue
# 普通字段过滤
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
713
|
if isinstance(value, list):
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
714
|
# 多值匹配(OR)
|
be52af70
tangwang
first commit
|
715
|
filter_clauses.append({
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
716
|
"terms": {field: value}
|
be52af70
tangwang
first commit
|
717
|
})
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
718
719
720
721
722
723
|
else:
# 单值精确匹配
filter_clauses.append({
"term": {field: value}
})
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
724
|
# 2. 处理范围过滤(支持 RangeFilter Pydantic 模型或字典)
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
725
|
if range_filters:
|
43f1139f
tangwang
refactor: ES查询结构重...
|
726
|
for field, range_filter in range_filters.items():
|
f0d020c3
tangwang
多语言查询改为只支持中英文两种,f...
|
727
728
729
730
731
732
733
734
735
736
|
# 支持 Pydantic 模型或字典格式
if hasattr(range_filter, 'model_dump'):
# Pydantic 模型
range_dict = range_filter.model_dump(exclude_none=True)
elif isinstance(range_filter, dict):
# 已经是字典格式
range_dict = {k: v for k, v in range_filter.items() if v is not None}
else:
# 其他格式,跳过
continue
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
737
|
|
43f1139f
tangwang
refactor: ES查询结构重...
|
738
|
if range_dict:
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
739
|
filter_clauses.append({
|
43f1139f
tangwang
refactor: ES查询结构重...
|
740
|
"range": {field: range_dict}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
741
742
|
})
|
be52af70
tangwang
first commit
|
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
return filter_clauses
def add_spu_collapse(
self,
es_query: Dict[str, Any],
spu_field: str,
inner_hits_size: int = 3
) -> Dict[str, Any]:
"""
Add SPU aggregation/collapse to query.
Args:
es_query: Existing ES query
spu_field: Field containing SPU ID
inner_hits_size: Number of SKUs to return per SPU
Returns:
Modified ES query
"""
# Add collapse
es_query["collapse"] = {
"field": spu_field,
"inner_hits": {
"_source": False,
"name": "top_docs",
"size": inner_hits_size
}
}
# Add cardinality aggregation to count unique SPUs
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"]["unique_count"] = {
"cardinality": {
"field": spu_field
}
}
return es_query
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
784
785
786
787
788
789
790
791
792
793
794
|
def add_sorting(
self,
es_query: Dict[str, Any],
sort_by: str,
sort_order: str = "desc"
) -> Dict[str, Any]:
"""
Add sorting to ES query.
Args:
es_query: Existing ES query
|
13320ac6
tangwang
分面接口修改:
|
795
|
sort_by: Field name for sorting (支持 'price' 自动映射)
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
796
797
798
799
800
801
802
803
804
805
806
|
sort_order: Sort order: 'asc' or 'desc'
Returns:
Modified ES query
"""
if not sort_by:
return es_query
if not sort_order:
sort_order = "desc"
|
13320ac6
tangwang
分面接口修改:
|
807
808
809
810
811
812
813
|
# Auto-map 'price' to 'min_price' or 'max_price' based on sort_order
if sort_by == "price":
if sort_order.lower() == "asc":
sort_by = "min_price" # 价格从低到高
else:
sort_by = "max_price" # 价格从高到低
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
814
815
816
817
818
819
820
821
822
823
824
825
826
|
if "sort" not in es_query:
es_query["sort"] = []
# Add the specified sort
sort_field = {
sort_by: {
"order": sort_order.lower()
}
}
es_query["sort"].append(sort_field)
return es_query
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
827
|
def build_facets(
|
be52af70
tangwang
first commit
|
828
|
self,
|
13320ac6
tangwang
分面接口修改:
|
829
|
facet_configs: Optional[List['FacetConfig']] = None
|
be52af70
tangwang
first commit
|
830
831
|
) -> Dict[str, Any]:
"""
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
832
|
构建分面聚合。
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
833
|
|
be52af70
tangwang
first commit
|
834
|
Args:
|
13320ac6
tangwang
分面接口修改:
|
835
836
837
838
839
840
|
facet_configs: 分面配置对象列表
支持的字段类型:
- 普通字段: 如 "category1_name"(terms 或 range 类型)
- specifications: "specifications"(返回所有规格名称及其值)
- specifications.{name}: 如 "specifications.color"(返回指定规格名称的值)
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
841
|
|
be52af70
tangwang
first commit
|
842
|
Returns:
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
843
|
ES aggregations 字典
|
be52af70
tangwang
first commit
|
844
|
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
845
846
847
848
849
850
|
if not facet_configs:
return {}
aggs = {}
for config in facet_configs:
|
13320ac6
tangwang
分面接口修改:
|
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
|
field = config.field
size = config.size
facet_type = config.type
# 处理 specifications(所有规格名称)
if field == "specifications":
aggs["specifications_facet"] = {
"nested": {"path": "specifications"},
"aggs": {
"by_name": {
"terms": {
"field": "specifications.name",
"size": 20,
"order": {"_count": "desc"}
},
"aggs": {
"value_counts": {
"terms": {
"field": "specifications.value",
"size": size,
"order": {"_count": "desc"}
|
bf89b597
tangwang
feat(search): ada...
|
872
873
874
875
876
|
}
}
}
}
}
|
13320ac6
tangwang
分面接口修改:
|
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
|
}
continue
# 处理 specifications.{name}(指定规格名称)
if field.startswith("specifications."):
name = field[len("specifications."):]
agg_name = f"specifications_{name}_facet"
aggs[agg_name] = {
"nested": {"path": "specifications"},
"aggs": {
"filter_by_name": {
"filter": {"term": {"specifications.name": name}},
"aggs": {
"value_counts": {
"terms": {
"field": "specifications.value",
"size": size,
"order": {"_count": "desc"}
|
f7d3cf70
tangwang
更新文档
|
895
896
897
898
899
|
}
}
}
}
}
|
13320ac6
tangwang
分面接口修改:
|
900
901
902
903
904
|
}
continue
# 处理普通字段
agg_name = f"{field}_facet"
|
bf89b597
tangwang
feat(search): ada...
|
905
|
|
13320ac6
tangwang
分面接口修改:
|
906
|
if facet_type == 'terms':
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
907
908
909
|
aggs[agg_name] = {
"terms": {
"field": field,
|
13320ac6
tangwang
分面接口修改:
|
910
|
"size": size,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
911
912
|
"order": {"_count": "desc"}
}
|
be52af70
tangwang
first commit
|
913
|
}
|
13320ac6
tangwang
分面接口修改:
|
914
915
|
elif facet_type == 'range':
if config.ranges:
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
916
|
aggs[agg_name] = {
|
13320ac6
tangwang
分面接口修改:
|
917
|
"range": {
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
918
|
"field": field,
|
13320ac6
tangwang
分面接口修改:
|
919
|
"ranges": config.ranges
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
920
921
|
}
}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
922
923
|
return aggs
|