Blame view

search/es_query_builder.py 33.2 KB
be52af70   tangwang   first commit
1
2
3
4
  """
  Elasticsearch query builder.
  
  Converts parsed queries and search parameters into ES DSL queries.
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
5
6
7
8
  
  Simplified architecture:
  - filters and (text_recall or embedding_recall)
  - function_score wrapper for boosting fields
be52af70   tangwang   first commit
9
10
  """
  
7bc756c5   tangwang   优化 ES 查询构建
11
  from typing import Dict, Any, List, Optional, Union, Tuple
be52af70   tangwang   first commit
12
13
  import numpy as np
  from .boolean_parser import QueryNode
9f96d6f3   tangwang   短query不用语义搜索
14
  from config import FunctionScoreConfig
be52af70   tangwang   first commit
15
16
17
18
19
20
21
22
23
24
  
  
  class ESQueryBuilder:
      """Builds Elasticsearch DSL queries."""
  
      def __init__(
          self,
          index_name: str,
          match_fields: List[str],
          text_embedding_field: Optional[str] = None,
13377199   tangwang   接口优化
25
          image_embedding_field: Optional[str] = None,
9f96d6f3   tangwang   短query不用语义搜索
26
          source_fields: Optional[List[str]] = None,
7bc756c5   tangwang   优化 ES 查询构建
27
28
          function_score_config: Optional[FunctionScoreConfig] = None,
          enable_multilang_search: bool = True
be52af70   tangwang   first commit
29
30
31
32
33
34
35
36
37
      ):
          """
          Initialize query builder.
  
          Args:
              index_name: ES index name
              match_fields: Fields to search for text matching
              text_embedding_field: Field name for text embeddings
              image_embedding_field: Field name for image embeddings
13377199   tangwang   接口优化
38
              source_fields: Fields to return in search results (_source includes)
9f96d6f3   tangwang   短query不用语义搜索
39
              function_score_config: Function score configuration
7bc756c5   tangwang   优化 ES 查询构建
40
              enable_multilang_search: Enable multi-language search using translations
be52af70   tangwang   first commit
41
42
43
44
45
          """
          self.index_name = index_name
          self.match_fields = match_fields
          self.text_embedding_field = text_embedding_field
          self.image_embedding_field = image_embedding_field
13377199   tangwang   接口优化
46
          self.source_fields = source_fields
9f96d6f3   tangwang   短query不用语义搜索
47
          self.function_score_config = function_score_config
7bc756c5   tangwang   优化 ES 查询构建
48
          self.enable_multilang_search = enable_multilang_search
be52af70   tangwang   first commit
49
  
c581becd   tangwang   feat: 实现 Multi-Se...
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
      def _split_filters_for_faceting(
          self,
          filters: Optional[Dict[str, Any]],
          facet_configs: Optional[List[Any]]
      ) -> tuple:
          """
          Split filters into conjunctive (query) and disjunctive (post_filter) based on facet configs.
          
          Disjunctive filters (multi-select facets):
          - Applied via post_filter (affects results but not aggregations)
          - Allows showing other options in the same facet even when filtered
          
          Conjunctive filters (standard facets):
          - Applied in query.bool.filter (affects both results and aggregations)
          - Standard drill-down behavior
          
          Args:
              filters: All filters from request
9a9b9ec5   tangwang   1. facet disjunctive
68
              facet_configs: Facet configurations with disjunctive flags
c581becd   tangwang   feat: 实现 Multi-Se...
69
70
71
72
73
74
75
76
77
78
              
          Returns:
              (conjunctive_filters, disjunctive_filters)
          """
          if not filters or not facet_configs:
              return filters or {}, {}
          
          # Get fields that support multi-select
          multi_select_fields = set()
          for fc in facet_configs:
9a9b9ec5   tangwang   1. facet disjunctive
79
              if getattr(fc, 'disjunctive', False):
c581becd   tangwang   feat: 实现 Multi-Se...
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
                  # Handle specifications.xxx format
                  if fc.field.startswith('specifications.'):
                      multi_select_fields.add('specifications')
                  else:
                      multi_select_fields.add(fc.field)
          
          # Split filters
          conjunctive = {}
          disjunctive = {}
          
          for field, value in filters.items():
              if field in multi_select_fields:
                  disjunctive[field] = value
              else:
                  conjunctive[field] = value
          
          return conjunctive, disjunctive
  
be52af70   tangwang   first commit
98
99
100
101
102
103
      def build_query(
          self,
          query_text: str,
          query_vector: Optional[np.ndarray] = None,
          query_node: Optional[QueryNode] = None,
          filters: Optional[Dict[str, Any]] = None,
6aa246be   tangwang   问题:Pydantic 应该能自动...
104
          range_filters: Optional[Dict[str, Any]] = None,
c581becd   tangwang   feat: 实现 Multi-Se...
105
          facet_configs: Optional[List[Any]] = None,
be52af70   tangwang   first commit
106
107
108
109
110
          size: int = 10,
          from_: int = 0,
          enable_knn: bool = True,
          knn_k: int = 50,
          knn_num_candidates: int = 200,
7bc756c5   tangwang   优化 ES 查询构建
111
112
          min_score: Optional[float] = None,
          parsed_query: Optional[Any] = None
be52af70   tangwang   first commit
113
114
      ) -> Dict[str, Any]:
          """
c581becd   tangwang   feat: 实现 Multi-Se...
115
          Build complete ES query with post_filter support for multi-select faceting.
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
116
  
c581becd   tangwang   feat: 实现 Multi-Se...
117
118
119
          结构:filters and (text_recall or embedding_recall) + post_filter
          - conjunctive_filters: 应用在 query.bool.filter(影响结果和聚合)
          - disjunctive_filters: 应用在 post_filter(只影响结果,不影响聚合)
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
120
121
122
          - text_recall: 文本相关性召回(中英文字段都用)
          - embedding_recall: 向量召回(KNN
          - function_score: 包装召回部分,支持提权字段
be52af70   tangwang   first commit
123
124
125
126
127
  
          Args:
              query_text: Query text for BM25 matching
              query_vector: Query embedding for KNN search
              query_node: Parsed boolean expression tree
c581becd   tangwang   feat: 实现 Multi-Se...
128
129
130
              filters: Exact match filters
              range_filters: Range filters for numeric fields (always applied in query)
              facet_configs: Facet configurations (used to identify multi-select facets)
be52af70   tangwang   first commit
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
              size: Number of results
              from_: Offset for pagination
              enable_knn: Whether to use KNN search
              knn_k: K value for KNN
              knn_num_candidates: Number of candidates for KNN
              min_score: Minimum score threshold
  
          Returns:
              ES query DSL dictionary
          """
          es_query = {
              "size": size,
              "from": from_
          }
  
13377199   tangwang   接口优化
146
147
148
149
150
151
          # Add _source filtering if source_fields are configured
          if self.source_fields:
              es_query["_source"] = {
                  "includes": self.source_fields
              }
  
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
152
153
154
155
156
157
158
159
160
          # 1. Build recall queries (text or embedding)
          recall_clauses = []
          
          # Text recall (always include if query_text exists)
          if query_text:
              if query_node and query_node.operator != 'TERM':
                  # Complex boolean query
                  text_query = self._build_boolean_query(query_node)
              else:
7bc756c5   tangwang   优化 ES 查询构建
161
162
                  # Simple text query - use advanced should-based multi-query strategy
                  text_query = self._build_advanced_text_query(query_text, parsed_query)
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
163
164
165
166
167
              recall_clauses.append(text_query)
          
          # Embedding recall (KNN - separate from query, handled below)
          has_embedding = enable_knn and query_vector is not None and self.text_embedding_field
          
c581becd   tangwang   feat: 实现 Multi-Se...
168
169
170
171
172
173
174
          # 2. Split filters for multi-select faceting
          conjunctive_filters, disjunctive_filters = self._split_filters_for_faceting(
              filters, facet_configs
          )
          
          # Build filter clauses for query (conjunctive filters + range filters)
          filter_clauses = self._build_filters(conjunctive_filters, range_filters)
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
          
          # 3. Build main query structure: filters and recall
          if recall_clauses:
              # Combine text recalls with OR logic (if multiple)
              if len(recall_clauses) == 1:
                  recall_query = recall_clauses[0]
              else:
                  recall_query = {
                      "bool": {
                          "should": recall_clauses,
                          "minimum_should_match": 1
                      }
                  }
              
              # Wrap recall with function_score for boosting
              recall_query = self._wrap_with_function_score(recall_query)
              
              # Combine filters and recall
6aa246be   tangwang   问题:Pydantic 应该能自动...
193
194
195
              if filter_clauses:
                  es_query["query"] = {
                      "bool": {
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
196
                          "must": [recall_query],
6aa246be   tangwang   问题:Pydantic 应该能自动...
197
198
                          "filter": filter_clauses
                      }
be52af70   tangwang   first commit
199
                  }
6aa246be   tangwang   问题:Pydantic 应该能自动...
200
              else:
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
201
                  es_query["query"] = recall_query
be52af70   tangwang   first commit
202
          else:
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
203
204
205
206
207
208
209
210
211
212
              # No recall queries, only filters (match_all filtered)
              if filter_clauses:
                  es_query["query"] = {
                      "bool": {
                          "must": [{"match_all": {}}],
                          "filter": filter_clauses
                      }
                  }
              else:
                  es_query["query"] = {"match_all": {}}
be52af70   tangwang   first commit
213
  
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
214
215
          # 4. Add KNN search if enabled (separate from query, ES will combine)
          if has_embedding:
be52af70   tangwang   first commit
216
217
218
219
              knn_clause = {
                  "field": self.text_embedding_field,
                  "query_vector": query_vector.tolist(),
                  "k": knn_k,
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
220
221
                  "num_candidates": knn_num_candidates,
                  "boost": 0.2  # Lower boost for embedding recall
be52af70   tangwang   first commit
222
223
224
              }
              es_query["knn"] = knn_clause
  
c581becd   tangwang   feat: 实现 Multi-Se...
225
226
227
228
229
230
231
232
233
234
235
236
          # 5. Add post_filter for disjunctive (multi-select) filters
          if disjunctive_filters:
              post_filter_clauses = self._build_filters(disjunctive_filters, None)
              if post_filter_clauses:
                  if len(post_filter_clauses) == 1:
                      es_query["post_filter"] = post_filter_clauses[0]
                  else:
                      es_query["post_filter"] = {
                          "bool": {"filter": post_filter_clauses}
                      }
  
          # 6. Add minimum score filter
be52af70   tangwang   first commit
237
238
239
240
          if min_score is not None:
              es_query["min_score"] = min_score
  
          return es_query
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
      
      def _wrap_with_function_score(self, query: Dict[str, Any]) -> Dict[str, Any]:
          """
          Wrap query with function_score for boosting fields.
          
          Args:
              query: Base query to wrap
              
          Returns:
              Function score query or original query if no functions configured
          """
          functions = self._build_score_functions()
          
          # If no functions configured, return original query
          if not functions:
              return query
          
          # Build function_score query
9f96d6f3   tangwang   短query不用语义搜索
259
260
261
          score_mode = self.function_score_config.score_mode if self.function_score_config else "sum"
          boost_mode = self.function_score_config.boost_mode if self.function_score_config else "multiply"
          
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
262
263
264
265
          function_score_query = {
              "function_score": {
                  "query": query,
                  "functions": functions,
9f96d6f3   tangwang   短query不用语义搜索
266
267
                  "score_mode": score_mode,
                  "boost_mode": boost_mode
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
268
269
270
271
272
273
274
275
276
277
278
279
280
              }
          }
          
          return function_score_query
      
      def _build_score_functions(self) -> List[Dict[str, Any]]:
          """
          Build function_score functions from config.
          
          Returns:
              List of function score functions
          """
          functions = []
9f96d6f3   tangwang   短query不用语义搜索
281
282
283
284
          if not self.function_score_config:
              return functions
          
          config_functions = self.function_score_config.functions or []
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
          
          for func_config in config_functions:
              func_type = func_config.get("type")
              
              if func_type == "filter_weight":
                  # Filter + Weight
                  functions.append({
                      "filter": func_config["filter"],
                      "weight": func_config.get("weight", 1.0)
                  })
              
              elif func_type == "field_value_factor":
                  # Field Value Factor
                  functions.append({
                      "field_value_factor": {
                          "field": func_config["field"],
                          "factor": func_config.get("factor", 1.0),
                          "modifier": func_config.get("modifier", "none"),
                          "missing": func_config.get("missing", 1.0)
                      }
                  })
              
              elif func_type == "decay":
                  # Decay Function (gauss/exp/linear)
                  decay_func = func_config.get("function", "gauss")
                  field = func_config["field"]
                  
                  decay_params = {
                      "origin": func_config.get("origin", "now"),
                      "scale": func_config["scale"]
                  }
                  
                  if "offset" in func_config:
                      decay_params["offset"] = func_config["offset"]
                  if "decay" in func_config:
                      decay_params["decay"] = func_config["decay"]
                  
                  functions.append({
                      decay_func: {
                          field: decay_params
                      }
                  })
          
          return functions
be52af70   tangwang   first commit
329
330
331
332
  
      def _build_text_query(self, query_text: str) -> Dict[str, Any]:
          """
          Build simple text matching query (BM25).
7bc756c5   tangwang   优化 ES 查询构建
333
          Legacy method - kept for backward compatibility.
be52af70   tangwang   first commit
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  
          Args:
              query_text: Query text
  
          Returns:
              ES query clause
          """
          return {
              "multi_match": {
                  "query": query_text,
                  "fields": self.match_fields,
                  "minimum_should_match": "67%",
                  "tie_breaker": 0.9,
                  "boost": 1.0,
                  "_name": "base_query"
              }
          }
7bc756c5   tangwang   优化 ES 查询构建
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
      
      def _get_match_fields(self, language: str) -> Tuple[List[str], List[str]]:
          """
          Get match fields for a specific language.
          
          Args:
              language: Language code ('zh' or 'en')
              
          Returns:
              (all_fields, core_fields) - core_fields are for phrase/keyword queries
          """
          if language == 'zh':
              all_fields = [
                  "title_zh^3.0",
                  "brief_zh^1.5",
                  "description_zh",
                  "vendor_zh^1.5",
                  "tags",
                  "category_path_zh^1.5",
                  "category_name_zh^1.5",
                  "option1_values^0.5"
              ]
              core_fields = [
                  "title_zh^3.0",
                  "brief_zh^1.5",
                  "vendor_zh^1.5",
                  "category_name_zh^1.5"
              ]
          else:  # en
              all_fields = [
                  "title_en^3.0",
                  "brief_en^1.5",
                  "description_en",
                  "vendor_en^1.5",
                  "tags",
                  "category_path_en^1.5",
                  "category_name_en^1.5",
                  "option1_values^0.5"
              ]
              core_fields = [
                  "title_en^3.0",
                  "brief_en^1.5",
                  "vendor_en^1.5",
                  "category_name_en^1.5"
              ]
          return all_fields, core_fields
      
      def _get_embedding_field(self, language: str) -> str:
          """Get embedding field name for a language."""
          # Currently using unified embedding field
          return self.text_embedding_field or "title_embedding"
      
      def _build_advanced_text_query(self, query_text: str, parsed_query: Optional[Any] = None) -> Dict[str, Any]:
          """
          Build advanced text query using should clauses with multiple query strategies.
          
          Reference implementation:
          - base_query: main query with AND operator and 75% minimum_should_match
          - translation queries: lower boost (0.4) for other languages
          - phrase query: for short queries (2+ tokens)
          - keywords query: extracted nouns from query
          - KNN query: added separately in build_query
          
          Args:
              query_text: Query text
              parsed_query: ParsedQuery object with analysis results
              
          Returns:
              ES bool query with should clauses
          """
          should_clauses = []
          
          # Get query analysis from parsed_query
          translations = {}
          language = 'zh'
          keywords = ""
          token_count = 0
          is_short_query = False
          is_long_query = False
          
          if parsed_query:
              translations = parsed_query.translations or {}
              language = parsed_query.detected_language or 'zh'
              keywords = getattr(parsed_query, 'keywords', '') or ""
              token_count = getattr(parsed_query, 'token_count', 0) or 0
              is_short_query = getattr(parsed_query, 'is_short_query', False)
              is_long_query = getattr(parsed_query, 'is_long_query', False)
          
          # Get match fields for the detected language
          match_fields, core_fields = self._get_match_fields(language)
          
          # Tie breaker values
          tie_breaker_base_query = 0.9
          tie_breaker_long_query = 0.9
          tie_breaker_keywords = 0.9
          
          # 1. Base query - main query with AND operator
          should_clauses.append({
              "multi_match": {
                  "_name": "base_query",
                  "fields": match_fields,
                  "minimum_should_match": "75%",
                  "operator": "AND",
                  "query": query_text,
                  "tie_breaker": tie_breaker_base_query
              }
          })
          
          # 2. Translation queries - lower boost (0.4) for other languages
          if self.enable_multilang_search:
              if language != 'zh' and translations.get('zh') and translations['zh'] != query_text:
                  zh_fields, _ = self._get_match_fields('zh')
                  should_clauses.append({
                      "multi_match": {
                          "query": translations['zh'],
                          "fields": zh_fields,
                          "operator": "AND",
                          "minimum_should_match": "75%",
                          "tie_breaker": tie_breaker_base_query,
                          "boost": 0.4,
                          "_name": "base_query_trans_zh"
                      }
                  })
              
              if language != 'en' and translations.get('en') and translations['en'] != query_text:
                  en_fields, _ = self._get_match_fields('en')
                  should_clauses.append({
                      "multi_match": {
                          "query": translations['en'],
                          "fields": en_fields,
                          "operator": "AND",
                          "minimum_should_match": "75%",
                          "tie_breaker": tie_breaker_base_query,
                          "boost": 0.4,
                          "_name": "base_query_trans_en"
                      }
                  })
          
          # 3. Long query - add a query with lower minimum_should_match
          # Currently disabled (False condition in reference)
          if False and is_long_query:
              boost = 0.5 * pow(min(1.0, token_count / 10.0), 0.9)
              minimum_should_match = "70%"
              should_clauses.append({
                  "multi_match": {
                      "query": query_text,
                      "fields": match_fields,
                      "minimum_should_match": minimum_should_match,
                      "boost": boost,
                      "tie_breaker": tie_breaker_long_query,
                      "_name": "long_query"
                  }
              })
          
          # 4. Short query - add phrase query
          ENABLE_PHRASE_QUERY = True
          if ENABLE_PHRASE_QUERY and token_count >= 2 and is_short_query:
              query_length = len(query_text)
              slop = 0 if query_length < 3 else 1 if query_length < 5 else 2
              should_clauses.append({
                  "multi_match": {
                      "query": query_text,
                      "fields": core_fields,
                      "type": "phrase",
                      "slop": slop,
                      "boost": 1.0,
                      "_name": "phrase_query"
                  }
              })
          
          # 5. Keywords query - extracted nouns from query
          elif keywords and len(keywords.split()) <= 2 and 2 * len(keywords.replace(' ', '')) <= len(query_text):
              should_clauses.append({
                  "multi_match": {
                      "query": keywords,
                      "fields": core_fields,
                      "operator": "AND",
                      "tie_breaker": tie_breaker_keywords,
                      "boost": 0.1,
                      "_name": "keywords_query"
                  }
              })
          
          # Return bool query with should clauses
          if len(should_clauses) == 1:
              return should_clauses[0]
          
          return {
              "bool": {
                  "should": should_clauses,
                  "minimum_should_match": 1
              }
          }
be52af70   tangwang   first commit
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
  
      def _build_boolean_query(self, node: QueryNode) -> Dict[str, Any]:
          """
          Build query from boolean expression tree.
  
          Args:
              node: Query tree node
  
          Returns:
              ES query clause
          """
          if node.operator == 'TERM':
              # Leaf node - simple text query
              return self._build_text_query(node.value)
  
          elif node.operator == 'AND':
              # All terms must match
              return {
                  "bool": {
                      "must": [
                          self._build_boolean_query(term)
                          for term in node.terms
                      ]
                  }
              }
  
          elif node.operator == 'OR':
              # Any term must match
              return {
                  "bool": {
                      "should": [
                          self._build_boolean_query(term)
                          for term in node.terms
                      ],
                      "minimum_should_match": 1
                  }
              }
  
          elif node.operator == 'ANDNOT':
              # First term must match, second must not
              if len(node.terms) >= 2:
                  return {
                      "bool": {
                          "must": [self._build_boolean_query(node.terms[0])],
                          "must_not": [self._build_boolean_query(node.terms[1])]
                      }
                  }
              else:
                  return self._build_boolean_query(node.terms[0])
  
          elif node.operator == 'RANK':
              # Like OR but for ranking (all terms contribute to score)
              return {
                  "bool": {
                      "should": [
                          self._build_boolean_query(term)
                          for term in node.terms
                      ]
                  }
              }
  
          else:
              # Unknown operator
              return {"match_all": {}}
  
6aa246be   tangwang   问题:Pydantic 应该能自动...
609
610
611
      def _build_filters(
          self, 
          filters: Optional[Dict[str, Any]] = None,
43f1139f   tangwang   refactor: ES查询结构重...
612
          range_filters: Optional[Dict[str, 'RangeFilter']] = None
6aa246be   tangwang   问题:Pydantic 应该能自动...
613
      ) -> List[Dict[str, Any]]:
be52af70   tangwang   first commit
614
          """
43f1139f   tangwang   refactor: ES查询结构重...
615
          构建过滤子句。
6aa246be   tangwang   问题:Pydantic 应该能自动...
616
          
be52af70   tangwang   first commit
617
          Args:
6aa246be   tangwang   问题:Pydantic 应该能自动...
618
              filters: 精确匹配过滤器字典
43f1139f   tangwang   refactor: ES查询结构重...
619
              range_filters: 范围过滤器(Dict[str, RangeFilter]RangeFilter  Pydantic 模型)
6aa246be   tangwang   问题:Pydantic 应该能自动...
620
          
be52af70   tangwang   first commit
621
          Returns:
43f1139f   tangwang   refactor: ES查询结构重...
622
              ES filter 子句列表
be52af70   tangwang   first commit
623
624
          """
          filter_clauses = []
6aa246be   tangwang   问题:Pydantic 应该能自动...
625
626
627
628
          
          # 1. 处理精确匹配过滤
          if filters:
              for field, value in filters.items():
f7d3cf70   tangwang   更新文档
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
                  # 特殊处理:specifications 嵌套过滤
                  if field == "specifications":
                      if isinstance(value, dict):
                          # 单个规格过滤:{"name": "color", "value": "green"}
                          name = value.get("name")
                          spec_value = value.get("value")
                          if name and spec_value:
                              filter_clauses.append({
                                  "nested": {
                                      "path": "specifications",
                                      "query": {
                                          "bool": {
                                              "must": [
                                                  {"term": {"specifications.name": name}},
                                                  {"term": {"specifications.value": spec_value}}
                                              ]
                                          }
                                      }
                                  }
                              })
                      elif isinstance(value, list):
85f08823   tangwang   过滤逻辑
650
651
652
653
654
                          # 多个规格过滤:按 name 分组,相同维度 OR,不同维度 AND
                          # 例如:[{"name": "size", "value": "3"}, {"name": "size", "value": "4"}, {"name": "color", "value": "green"}]
                          # 应该生成:(size=3 OR size=4) AND color=green
                          from collections import defaultdict
                          specs_by_name = defaultdict(list)
f7d3cf70   tangwang   更新文档
655
656
657
658
659
                          for spec in value:
                              if isinstance(spec, dict):
                                  name = spec.get("name")
                                  spec_value = spec.get("value")
                                  if name and spec_value:
85f08823   tangwang   过滤逻辑
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
                                      specs_by_name[name].append(spec_value)
                          
                          # 为每个 name 维度生成一个过滤子句
                          for name, values in specs_by_name.items():
                              if len(values) == 1:
                                  # 单个值,直接生成 term 查询
                                  filter_clauses.append({
                                      "nested": {
                                          "path": "specifications",
                                          "query": {
                                              "bool": {
                                                  "must": [
                                                      {"term": {"specifications.name": name}},
                                                      {"term": {"specifications.value": values[0]}}
                                                  ]
f7d3cf70   tangwang   更新文档
675
676
                                              }
                                          }
85f08823   tangwang   过滤逻辑
677
678
679
680
681
682
683
684
685
686
687
688
689
                                      }
                                  })
                              else:
                                  # 多个值,使用 should (OR) 连接
                                  should_clauses = []
                                  for spec_value in values:
                                      should_clauses.append({
                                          "bool": {
                                              "must": [
                                                  {"term": {"specifications.name": name}},
                                                  {"term": {"specifications.value": spec_value}}
                                              ]
                                          }
f7d3cf70   tangwang   更新文档
690
                                      })
85f08823   tangwang   过滤逻辑
691
692
693
694
695
696
697
698
699
700
701
                                  filter_clauses.append({
                                      "nested": {
                                          "path": "specifications",
                                          "query": {
                                              "bool": {
                                                  "should": should_clauses,
                                                  "minimum_should_match": 1
                                              }
                                          }
                                      }
                                  })
f7d3cf70   tangwang   更新文档
702
703
704
                      continue
                  
                  # 普通字段过滤
c86c8237   tangwang   支持聚合。过滤项补充了逻辑,但是有问题
705
                  if isinstance(value, list):
6aa246be   tangwang   问题:Pydantic 应该能自动...
706
                      # 多值匹配(OR)
be52af70   tangwang   first commit
707
                      filter_clauses.append({
6aa246be   tangwang   问题:Pydantic 应该能自动...
708
                          "terms": {field: value}
be52af70   tangwang   first commit
709
                      })
6aa246be   tangwang   问题:Pydantic 应该能自动...
710
711
712
713
714
715
                  else:
                      # 单值精确匹配
                      filter_clauses.append({
                          "term": {field: value}
                      })
          
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
716
          # 2. 处理范围过滤(支持 RangeFilter Pydantic 模型或字典)
6aa246be   tangwang   问题:Pydantic 应该能自动...
717
          if range_filters:
43f1139f   tangwang   refactor: ES查询结构重...
718
              for field, range_filter in range_filters.items():
f0d020c3   tangwang   多语言查询改为只支持中英文两种,f...
719
720
721
722
723
724
725
726
727
728
                  # 支持 Pydantic 模型或字典格式
                  if hasattr(range_filter, 'model_dump'):
                      # Pydantic 模型
                      range_dict = range_filter.model_dump(exclude_none=True)
                  elif isinstance(range_filter, dict):
                      # 已经是字典格式
                      range_dict = {k: v for k, v in range_filter.items() if v is not None}
                  else:
                      # 其他格式,跳过
                      continue
6aa246be   tangwang   问题:Pydantic 应该能自动...
729
                  
43f1139f   tangwang   refactor: ES查询结构重...
730
                  if range_dict:
6aa246be   tangwang   问题:Pydantic 应该能自动...
731
                      filter_clauses.append({
43f1139f   tangwang   refactor: ES查询结构重...
732
                          "range": {field: range_dict}
6aa246be   tangwang   问题:Pydantic 应该能自动...
733
734
                      })
          
be52af70   tangwang   first commit
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
          return filter_clauses
  
      def add_spu_collapse(
          self,
          es_query: Dict[str, Any],
          spu_field: str,
          inner_hits_size: int = 3
      ) -> Dict[str, Any]:
          """
          Add SPU aggregation/collapse to query.
  
          Args:
              es_query: Existing ES query
              spu_field: Field containing SPU ID
              inner_hits_size: Number of SKUs to return per SPU
  
          Returns:
              Modified ES query
          """
          # Add collapse
          es_query["collapse"] = {
              "field": spu_field,
              "inner_hits": {
                  "_source": False,
                  "name": "top_docs",
                  "size": inner_hits_size
              }
          }
  
          # Add cardinality aggregation to count unique SPUs
          if "aggs" not in es_query:
              es_query["aggs"] = {}
  
          es_query["aggs"]["unique_count"] = {
              "cardinality": {
                  "field": spu_field
              }
          }
  
          return es_query
  
c86c8237   tangwang   支持聚合。过滤项补充了逻辑,但是有问题
776
777
778
779
780
781
782
783
784
785
786
      def add_sorting(
          self,
          es_query: Dict[str, Any],
          sort_by: str,
          sort_order: str = "desc"
      ) -> Dict[str, Any]:
          """
          Add sorting to ES query.
  
          Args:
              es_query: Existing ES query
13320ac6   tangwang   分面接口修改:
787
              sort_by: Field name for sorting (支持 'price' 自动映射)
c86c8237   tangwang   支持聚合。过滤项补充了逻辑,但是有问题
788
789
790
791
792
793
794
795
796
797
798
              sort_order: Sort order: 'asc' or 'desc'
  
          Returns:
              Modified ES query
          """
          if not sort_by:
              return es_query
  
          if not sort_order:
              sort_order = "desc"
  
13320ac6   tangwang   分面接口修改:
799
800
801
802
803
804
805
          # Auto-map 'price' to 'min_price' or 'max_price' based on sort_order
          if sort_by == "price":
              if sort_order.lower() == "asc":
                  sort_by = "min_price"  # 价格从低到高
              else:
                  sort_by = "max_price"  # 价格从高到低
  
c86c8237   tangwang   支持聚合。过滤项补充了逻辑,但是有问题
806
807
808
809
810
811
812
813
814
815
816
817
818
          if "sort" not in es_query:
              es_query["sort"] = []
  
          # Add the specified sort
          sort_field = {
              sort_by: {
                  "order": sort_order.lower()
              }
          }
          es_query["sort"].append(sort_field)
  
          return es_query
  
6aa246be   tangwang   问题:Pydantic 应该能自动...
819
      def build_facets(
be52af70   tangwang   first commit
820
          self,
13320ac6   tangwang   分面接口修改:
821
          facet_configs: Optional[List['FacetConfig']] = None
be52af70   tangwang   first commit
822
823
      ) -> Dict[str, Any]:
          """
ff5325fa   tangwang   修复:直接在 Searcher 层...
824
          构建分面聚合。
6aa246be   tangwang   问题:Pydantic 应该能自动...
825
          
be52af70   tangwang   first commit
826
          Args:
13320ac6   tangwang   分面接口修改:
827
828
829
830
831
832
              facet_configs: 分面配置对象列表
              
              支持的字段类型:
                  - 普通字段:  "category1_name"terms  range 类型)
                  - specifications: "specifications"(返回所有规格名称及其值)
                  - specifications.{name}:  "specifications.color"(返回指定规格名称的值)
6aa246be   tangwang   问题:Pydantic 应该能自动...
833
          
be52af70   tangwang   first commit
834
          Returns:
ff5325fa   tangwang   修复:直接在 Searcher 层...
835
              ES aggregations 字典
be52af70   tangwang   first commit
836
          """
6aa246be   tangwang   问题:Pydantic 应该能自动...
837
838
839
840
841
842
          if not facet_configs:
              return {}
          
          aggs = {}
          
          for config in facet_configs:
13320ac6   tangwang   分面接口修改:
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
              field = config.field
              size = config.size
              facet_type = config.type
              
              # 处理 specifications(所有规格名称)
              if field == "specifications":
                  aggs["specifications_facet"] = {
                      "nested": {"path": "specifications"},
                      "aggs": {
                          "by_name": {
                              "terms": {
                                  "field": "specifications.name",
                                  "size": 20,
                                  "order": {"_count": "desc"}
                              },
                              "aggs": {
                                  "value_counts": {
                                      "terms": {
                                          "field": "specifications.value",
                                          "size": size,
                                          "order": {"_count": "desc"}
bf89b597   tangwang   feat(search): ada...
864
865
866
867
868
                                      }
                                  }
                              }
                          }
                      }
13320ac6   tangwang   分面接口修改:
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
                  }
                  continue
              
              # 处理 specifications.{name}(指定规格名称)
              if field.startswith("specifications."):
                  name = field[len("specifications."):]
                  agg_name = f"specifications_{name}_facet"
                  aggs[agg_name] = {
                      "nested": {"path": "specifications"},
                      "aggs": {
                          "filter_by_name": {
                              "filter": {"term": {"specifications.name": name}},
                              "aggs": {
                                  "value_counts": {
                                      "terms": {
                                          "field": "specifications.value",
                                          "size": size,
                                          "order": {"_count": "desc"}
f7d3cf70   tangwang   更新文档
887
888
889
890
891
                                      }
                                  }
                              }
                          }
                      }
13320ac6   tangwang   分面接口修改:
892
893
894
895
896
                  }
                  continue
              
              # 处理普通字段
              agg_name = f"{field}_facet"
bf89b597   tangwang   feat(search): ada...
897
              
13320ac6   tangwang   分面接口修改:
898
              if facet_type == 'terms':
6aa246be   tangwang   问题:Pydantic 应该能自动...
899
900
901
                  aggs[agg_name] = {
                      "terms": {
                          "field": field,
13320ac6   tangwang   分面接口修改:
902
                          "size": size,
6aa246be   tangwang   问题:Pydantic 应该能自动...
903
904
                          "order": {"_count": "desc"}
                      }
be52af70   tangwang   first commit
905
                  }
13320ac6   tangwang   分面接口修改:
906
907
              elif facet_type == 'range':
                  if config.ranges:
6aa246be   tangwang   问题:Pydantic 应该能自动...
908
                      aggs[agg_name] = {
13320ac6   tangwang   分面接口修改:
909
                          "range": {
6aa246be   tangwang   问题:Pydantic 应该能自动...
910
                              "field": field,
13320ac6   tangwang   分面接口修改:
911
                              "ranges": config.ranges
6aa246be   tangwang   问题:Pydantic 应该能自动...
912
913
                          }
                      }
6aa246be   tangwang   问题:Pydantic 应该能自动...
914
915
          
          return aggs