8c503501
tangwang
补充基于阿里云的embedding
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
"""
Test script for cloud text embedding using Aliyun DashScope API.
Reads queries from queries.txt and tests embedding generation,
logging send time, receive time, and duration for each request.
"""
import os
import sys
import time
from datetime import datetime
from pathlib import Path
# Add parent directory to path
sys.path.insert(0, str(Path(__file__).parent.parent))
from embeddings.cloud_text_encoder import CloudTextEncoder
def format_timestamp(ts: float) -> str:
"""Format timestamp to readable string."""
return datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3]
def read_queries(file_path: str, limit: int = 100) -> list:
"""
Read queries from text file.
Args:
file_path: Path to queries file
limit: Maximum number of queries to read
Returns:
List of query strings
"""
queries = []
with open(file_path, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
if i >= limit:
break
query = line.strip()
if query: # Skip empty lines
queries.append(query)
return queries
def test_cloud_embedding(queries_file: str, num_queries: int = 100):
"""
Test cloud embedding with queries from file.
Args:
queries_file: Path to queries file
num_queries: Number of queries to test
"""
print("=" * 80)
print("Cloud Text Embedding Test - Aliyun DashScope API")
print("=" * 80)
print()
# Check if API key is set
api_key = os.getenv("DASHSCOPE_API_KEY")
if not api_key:
print("ERROR: DASHSCOPE_API_KEY environment variable is not set!")
print("Please set it using: export DASHSCOPE_API_KEY='your-api-key'")
return
print(f"API Key: {api_key[:10]}...{api_key[-4:]}")
print()
# Read queries
print(f"Reading queries from: {queries_file}")
try:
queries = read_queries(queries_file, limit=num_queries)
print(f"Successfully read {len(queries)} queries")
print()
except Exception as e:
print(f"ERROR: Failed to read queries file: {e}")
return
# Initialize encoder
print("Initializing CloudTextEncoder...")
try:
encoder = CloudTextEncoder()
print("CloudTextEncoder initialized successfully")
print()
except Exception as e:
print(f"ERROR: Failed to initialize encoder: {e}")
return
# Test embeddings
print("=" * 80)
print(f"Testing {len(queries)} queries (one by one)")
print("=" * 80)
print()
total_start = time.time()
success_count = 0
failure_count = 0
total_duration = 0.0
for i, query in enumerate(queries, 1):
try:
# Record send time
send_time = time.time()
send_time_str = format_timestamp(send_time)
# Generate embedding
embedding = encoder.encode(query)
# Record receive time
receive_time = time.time()
receive_time_str = format_timestamp(receive_time)
# Calculate duration
duration = receive_time - send_time
total_duration += duration
# Verify embedding
if embedding.shape[0] > 0:
success_count += 1
status = "✓ SUCCESS"
else:
failure_count += 1
status = "✗ FAILED"
# Print result
query_display = query[:50] + "..." if len(query) > 50 else query
print(f"[{i:3d}/{len(queries)}] {status}")
print(f" Query: {query_display}")
print(f" Send Time: {send_time_str}")
print(f" Receive Time: {receive_time_str}")
print(f" Duration: {duration:.3f}s")
print(f" Embedding Shape: {embedding.shape}")
print()
except Exception as e:
failure_count += 1
receive_time = time.time()
duration = receive_time - send_time
print(f"[{i:3d}/{len(queries)}] ✗ ERROR")
print(f" Query: {query[:50]}...")
print(f" Send Time: {send_time_str}")
print(f" Receive Time: {format_timestamp(receive_time)}")
print(f" Duration: {duration:.3f}s")
print(f" Error: {str(e)}")
print()
# Print summary
total_elapsed = time.time() - total_start
avg_duration = total_duration / len(queries) if queries else 0
print("=" * 80)
print("Test Summary")
print("=" * 80)
print(f"Total Queries: {len(queries)}")
print(f"Successful: {success_count}")
print(f"Failed: {failure_count}")
print(f"Success Rate: {success_count / len(queries) * 100:.1f}%")
print(f"Total Time: {total_elapsed:.3f}s")
print(f"Total API Time: {total_duration:.3f}s")
print(f"Average Duration: {avg_duration:.3f}s per query")
print(f"Throughput: {len(queries) / total_elapsed:.2f} queries/second")
print("=" * 80)
def main():
"""Main entry point."""
# Default queries file path
queries_file = Path(__file__).parent.parent / "data_crawling" / "queries.txt"
# Check if file exists
if not queries_file.exists():
print(f"ERROR: Queries file not found: {queries_file}")
return
# Run test with 100 queries
test_cloud_embedding(str(queries_file), num_queries=100)
if __name__ == "__main__":
main()
|