Blame view

api/result_formatter.py 17.4 KB
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
1
2
3
4
5
  """
  Result formatter for converting ES internal format to external-friendly format.
  """
  
  from typing import List, Dict, Any, Optional
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
6
  from .models import SpuResult, SkuResult, FacetResult, FacetValue
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
7
8
9
10
11
12
13
14
  
  
  class ResultFormatter:
      """Formats ES search results to external-friendly format."""
  
      @staticmethod
      def format_search_results(
          es_hits: List[Dict[str, Any]],
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
15
          max_score: float = 1.0,
ca91352a   tangwang   更新文档
16
          language: str = "zh",
a3a5d41b   tangwang   (sku_filter_dimen...
17
          sku_filter_dimension: Optional[List[str]] = None
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
18
      ) -> List[SpuResult]:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
19
          """
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
20
          Convert ES hits to SpuResult list.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
21
22
23
  
          Args:
              es_hits: List of ES hit dictionaries (with _id, _score, _source)
f0577ce4   tangwang   fix last up
24
              max_score: Maximum score (unused, kept for compatibility)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
25
26
  
          Returns:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
27
              List of SpuResult objects
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
28
29
          """
          results = []
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
30
31
32
33
34
35
36
37
38
39
40
41
          lang = (language or "zh").lower()
          if lang not in ("zh", "en"):
              lang = "en"
  
          def pick_lang_field(src: Dict[str, Any], base: str) -> Optional[str]:
              """从 *_zh / *_en 字段中按语言选择一个值,若目标语言缺失则回退到另一种。"""
              zh_val = src.get(f"{base}_zh")
              en_val = src.get(f"{base}_en")
              if lang == "zh":
                  return zh_val or en_val
              else:
                  return en_val or zh_val
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
42
43
44
  
          for hit in es_hits:
              source = hit.get('_source', {})
cd3799c6   tangwang   tenant2 1w测试数据 mo...
45
              score = hit.get('_score')
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
46
              
f0577ce4   tangwang   fix last up
47
              # Use original ES score directly (no normalization)
cd3799c6   tangwang   tenant2 1w测试数据 mo...
48
49
50
51
52
53
54
55
              # Handle None score (can happen with certain query types or when score is explicitly null)
              if score is None:
                  relevance_score = 0.0
              else:
                  try:
                      relevance_score = float(score)
                  except (ValueError, TypeError):
                      relevance_score = 0.0
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
56
  
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
57
58
59
60
61
62
63
64
              # Multi-language fields
              title = pick_lang_field(source, "title")
              brief = pick_lang_field(source, "brief")
              description = pick_lang_field(source, "description")
              vendor = pick_lang_field(source, "vendor")
              category_path = pick_lang_field(source, "category_path")
              category_name = pick_lang_field(source, "category_name")
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
65
66
67
68
69
70
71
72
73
74
75
              # Extract SKUs
              skus = []
              skus_data = source.get('skus', [])
              if isinstance(skus_data, list):
                  for sku_entry in skus_data:
                      sku = SkuResult(
                          sku_id=str(sku_entry.get('sku_id', '')),
                          title=sku_entry.get('title'),
                          price=sku_entry.get('price'),
                          compare_at_price=sku_entry.get('compare_at_price'),
                          sku=sku_entry.get('sku'),
ca91352a   tangwang   更新文档
76
                          sku_code=sku_entry.get('sku_code'),
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
77
                          stock=sku_entry.get('stock', 0),
ca91352a   tangwang   更新文档
78
79
80
81
82
83
                          weight=sku_entry.get('weight'),
                          weight_unit=sku_entry.get('weight_unit'),
                          option1_value=sku_entry.get('option1_value'),
                          option2_value=sku_entry.get('option2_value'),
                          option3_value=sku_entry.get('option3_value'),
                          image_src=sku_entry.get('image_src'),
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
84
                          options=sku_entry.get('options')
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
85
                      )
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
86
                      skus.append(sku)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
87
  
a3a5d41b   tangwang   (sku_filter_dimen...
88
              # Apply SKU filtering if dimension list is specified
ca91352a   tangwang   更新文档
89
              if sku_filter_dimension and skus:
a3a5d41b   tangwang   (sku_filter_dimen...
90
91
                  skus = ResultFormatter._filter_skus_by_dimensions(
                      skus,
ca91352a   tangwang   更新文档
92
93
94
95
96
97
98
                      sku_filter_dimension,
                      source.get('option1_name'),
                      source.get('option2_name'),
                      source.get('option3_name'),
                      source.get('specifications', [])
                  )
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
99
100
              # Determine in_stock (any sku has stock > 0)
              in_stock = any(sku.stock > 0 for sku in skus) if skus else True
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
101
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
102
103
104
              # Build SpuResult
              spu = SpuResult(
                  spu_id=str(source.get('spu_id', '')),
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
105
106
                  title=title,
                  brief=brief,
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
107
                  handle=source.get('handle'),
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
108
109
110
111
112
113
114
115
116
117
                  description=description,
                  vendor=vendor,
                  category=category_name,
                  category_path=category_path,
                  category_name=category_name,
                  category_id=source.get('category_id'),
                  category_level=source.get('category_level'),
                  category1_name=source.get('category1_name'),
                  category2_name=source.get('category2_name'),
                  category3_name=source.get('category3_name'),
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
118
119
120
121
122
123
                  tags=source.get('tags'),
                  price=source.get('min_price'),
                  compare_at_price=source.get('compare_at_price'),
                  currency="USD",  # Default currency
                  image_url=source.get('image_url'),
                  in_stock=in_stock,
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
124
125
126
127
128
129
130
131
                  sku_prices=source.get('sku_prices'),
                  sku_weights=source.get('sku_weights'),
                  sku_weight_units=source.get('sku_weight_units'),
                  total_inventory=source.get('total_inventory'),
                  option1_name=source.get('option1_name'),
                  option2_name=source.get('option2_name'),
                  option3_name=source.get('option3_name'),
                  specifications=source.get('specifications'),
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
132
                  skus=skus,
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
133
134
135
                  relevance_score=relevance_score
              )
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
136
              results.append(spu)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
137
138
139
140
  
          return results
  
      @staticmethod
a3a5d41b   tangwang   (sku_filter_dimen...
141
      def _filter_skus_by_dimensions(
ca91352a   tangwang   更新文档
142
          skus: List[SkuResult],
a3a5d41b   tangwang   (sku_filter_dimen...
143
          dimensions: List[str],
ca91352a   tangwang   更新文档
144
145
146
147
148
149
          option1_name: Optional[str] = None,
          option2_name: Optional[str] = None,
          option3_name: Optional[str] = None,
          specifications: Optional[List[Dict[str, Any]]] = None
      ) -> List[SkuResult]:
          """
a3a5d41b   tangwang   (sku_filter_dimen...
150
          Filter SKUs by one or more dimensions, keeping only one SKU per dimension value combination.
ca91352a   tangwang   更新文档
151
152
153
          
          Args:
              skus: List of SKU results to filter
a3a5d41b   tangwang   (sku_filter_dimen...
154
              dimensions: Filter dimensions, each dimension can be:
ca91352a   tangwang   更新文档
155
                  - 'option1', 'option2', 'option3': Direct option field
a3a5d41b   tangwang   (sku_filter_dimen...
156
                  - A specification/option name (e.g., 'color', 'size'): Match by option name
ca91352a   tangwang   更新文档
157
158
159
160
161
162
163
164
              option1_name: Name of option1 (e.g., 'color')
              option2_name: Name of option2 (e.g., 'size')
              option3_name: Name of option3
              specifications: List of specifications (for reference)
              
          Returns:
              Filtered list of SKUs (one per dimension value)
          """
a3a5d41b   tangwang   (sku_filter_dimen...
165
          if not skus or not dimensions:
ca91352a   tangwang   更新文档
166
              return skus
a3a5d41b   tangwang   (sku_filter_dimen...
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  
          # Resolve each dimension to an underlying SKU field (option1_value / option2_value / option3_value)
          filter_fields: List[str] = []
  
          for dim in dimensions:
              if not dim:
                  continue
              dim_lower = dim.lower()
  
              field_name: Optional[str] = None
              # Direct option field (option1, option2, option3)
              if dim_lower == 'option1':
                  field_name = 'option1_value'
              elif dim_lower == 'option2':
                  field_name = 'option2_value'
              elif dim_lower == 'option3':
                  field_name = 'option3_value'
              else:
                  # Try to match by option name
                  if option1_name and option1_name.lower() == dim_lower:
                      field_name = 'option1_value'
                  elif option2_name and option2_name.lower() == dim_lower:
                      field_name = 'option2_value'
                  elif option3_name and option3_name.lower() == dim_lower:
                      field_name = 'option3_value'
  
              if field_name and field_name not in filter_fields:
                  filter_fields.append(field_name)
  
          # If no matching field found for all dimensions, do not return any child SKUs
          if not filter_fields:
              return []
  
          # Group SKUs by dimension value combination and select first one from each group
          dimension_groups: Dict[tuple, SkuResult] = {}
  
ca91352a   tangwang   更新文档
203
          for sku in skus:
a3a5d41b   tangwang   (sku_filter_dimen...
204
205
206
207
208
209
210
211
212
213
              # Build key as combination of all dimension values
              key_values: List[str] = []
              for field in filter_fields:
                  dimension_value = getattr(sku, field, None)
                  # Use empty string as key part for None values
                  key_values.append(str(dimension_value) if dimension_value is not None else '')
  
              key = tuple(key_values)
  
              # Keep first SKU for each dimension combination
ca91352a   tangwang   更新文档
214
215
              if key not in dimension_groups:
                  dimension_groups[key] = sku
a3a5d41b   tangwang   (sku_filter_dimen...
216
217
  
          # Return filtered SKUs (one per dimension combination)
ca91352a   tangwang   更新文档
218
219
220
          return list(dimension_groups.values())
  
      @staticmethod
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
221
222
      def format_facets(
          es_aggregations: Dict[str, Any],
c581becd   tangwang   feat: 实现 Multi-Se...
223
224
          facet_configs: Optional[List[Any]] = None,
          current_filters: Optional[Dict[str, Any]] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
225
226
      ) -> List[FacetResult]:
          """
c581becd   tangwang   feat: 实现 Multi-Se...
227
          Format ES aggregations to FacetResult list with selected state.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
228
  
bf89b597   tangwang   feat(search): ada...
229
230
231
232
          支持:
          1. 普通terms聚合
          2. range聚合
          3. specifications嵌套聚合(按name分组,然后按value聚合)
c581becd   tangwang   feat: 实现 Multi-Se...
233
          4. 标记selected状态(基于current_filters
bf89b597   tangwang   feat(search): ada...
234
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
235
236
237
          Args:
              es_aggregations: ES aggregations response
              facet_configs: Facet configurations (optional)
c581becd   tangwang   feat: 实现 Multi-Se...
238
              current_filters: Current applied filters (used to mark selected values)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
239
240
  
          Returns:
c581becd   tangwang   feat: 实现 Multi-Se...
241
              List of FacetResult objects with selected states
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
242
243
          """
          facets = []
c581becd   tangwang   feat: 实现 Multi-Se...
244
245
246
247
248
249
250
251
252
253
254
255
256
          
          # Build a set of selected values for specifications
          selected_specs = set()
          if current_filters and 'specifications' in current_filters:
              specs = current_filters['specifications']
              if isinstance(specs, list):
                  # [{"name": "颜色", "value": "白色"}, ...]
                  for spec in specs:
                      if isinstance(spec, dict):
                          selected_specs.add((spec.get('name'), spec.get('value')))
              elif isinstance(specs, dict):
                  # {"name": "颜色", "value": "白色"}
                  selected_specs.add((specs.get('name'), specs.get('value')))
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
257
258
  
          for field_name, agg_data in es_aggregations.items():
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
259
              display_field = field_name[:-6] if field_name.endswith("_facet") else field_name
bf89b597   tangwang   feat(search): ada...
260
              
f7d3cf70   tangwang   更新文档
261
              # 处理specifications嵌套分面(所有name)
bf89b597   tangwang   feat(search): ada...
262
263
264
265
266
267
268
269
270
271
272
              if field_name == "specifications_facet" and 'by_name' in agg_data:
                  # specifications嵌套聚合:按name分组,每个name下有value_counts
                  by_name_agg = agg_data['by_name']
                  if 'buckets' in by_name_agg:
                      for name_bucket in by_name_agg['buckets']:
                          name = name_bucket['key']
                          value_counts = name_bucket.get('value_counts', {})
                          
                          values = []
                          if 'buckets' in value_counts:
                              for value_bucket in value_counts['buckets']:
c581becd   tangwang   feat: 实现 Multi-Se...
273
274
                                  # Check if this spec value is selected
                                  is_selected = (name, value_bucket['key']) in selected_specs
bf89b597   tangwang   feat(search): ada...
275
276
277
278
                                  value = FacetValue(
                                      value=value_bucket['key'],
                                      label=str(value_bucket['key']),
                                      count=value_bucket['doc_count'],
c581becd   tangwang   feat: 实现 Multi-Se...
279
                                      selected=is_selected
bf89b597   tangwang   feat(search): ada...
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                                  )
                                  values.append(value)
                          
                          # 为每个name创建一个分面结果
                          facet = FacetResult(
                              field=f"specifications.{name}",
                              label=str(name),  # 使用name作为label,如"颜色"、"尺寸"
                              type="terms",
                              values=values,
                              total_count=name_bucket['doc_count']
                          )
                          facets.append(facet)
                  continue
              
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
294
295
296
              # 处理specifications嵌套分面(指定name,如 specifications.color)
              if field_name.startswith("specifications_") and field_name.endswith("_facet"):
                  # 提取name(从 "specifications_color_facet" 提取 "color")
f7d3cf70   tangwang   更新文档
297
                  name = field_name[len("specifications_"):-len("_facet")]
f7d3cf70   tangwang   更新文档
298
                  
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
299
300
301
                  # ES nested聚合返回结构: { "doc_count": N, "filter_by_name": { ... } }
                  # filter_by_name应该在agg_data的第一层
                  filter_by_name_agg = agg_data.get('filter_by_name')
f7d3cf70   tangwang   更新文档
302
                  
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
303
304
305
306
307
308
                  if filter_by_name_agg:
                      value_counts = filter_by_name_agg.get('value_counts', {})
                      
                      values = []
                      if 'buckets' in value_counts and value_counts['buckets']:
                          for value_bucket in value_counts['buckets']:
c581becd   tangwang   feat: 实现 Multi-Se...
309
310
                              # Check if this spec value is selected
                              is_selected = (name, value_bucket['key']) in selected_specs
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
311
312
313
314
                              value = FacetValue(
                                  value=value_bucket['key'],
                                  label=str(value_bucket['key']),
                                  count=value_bucket['doc_count'],
c581becd   tangwang   feat: 实现 Multi-Se...
315
                                  selected=is_selected
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
316
317
318
319
320
321
322
323
324
325
326
327
                              )
                              values.append(value)
                      
                      # 创建分面结果
                      facet = FacetResult(
                          field=f"specifications.{name}",
                          label=str(name),
                          type="terms",
                          values=values,
                          total_count=filter_by_name_agg.get('doc_count', 0)
                      )
                      facets.append(facet)
f7d3cf70   tangwang   更新文档
328
329
                  continue
              
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
330
331
332
333
              # Handle terms aggregation
              if 'buckets' in agg_data:
                  values = []
                  for bucket in agg_data['buckets']:
c581becd   tangwang   feat: 实现 Multi-Se...
334
335
336
337
338
339
340
341
342
                      # Check if this value is selected in current filters
                      is_selected = False
                      if current_filters and display_field in current_filters:
                          filter_value = current_filters[display_field]
                          if isinstance(filter_value, list):
                              is_selected = bucket['key'] in filter_value
                          else:
                              is_selected = bucket['key'] == filter_value
                      
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
343
344
345
346
                      value = FacetValue(
                          value=bucket['key'],
                          label=bucket.get('key_as_string', str(bucket['key'])),
                          count=bucket['doc_count'],
c581becd   tangwang   feat: 实现 Multi-Se...
347
                          selected=is_selected
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
348
349
350
351
                      )
                      values.append(value)
  
                  facet = FacetResult(
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
352
353
                      field=display_field,
                      label=display_field,  # Can be enhanced with field labels
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
354
355
356
357
358
359
360
361
362
363
364
                      type="terms",
                      values=values,
                      total_count=agg_data.get('sum_other_doc_count', 0) + len(values)
                  )
                  facets.append(facet)
  
              # Handle range aggregation
              elif 'buckets' in agg_data and any('from' in b or 'to' in b for b in agg_data['buckets']):
                  values = []
                  for bucket in agg_data['buckets']:
                      range_key = bucket.get('key', '')
c581becd   tangwang   feat: 实现 Multi-Se...
365
366
367
368
369
370
371
372
373
                      # Check if this range is selected
                      is_selected = False
                      if current_filters and display_field in current_filters:
                          filter_value = current_filters[display_field]
                          if isinstance(filter_value, list):
                              is_selected = range_key in filter_value
                          else:
                              is_selected = range_key == filter_value
                      
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
374
375
376
377
                      value = FacetValue(
                          value=range_key,
                          label=range_key,
                          count=bucket['doc_count'],
c581becd   tangwang   feat: 实现 Multi-Se...
378
                          selected=is_selected
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
379
380
381
382
                      )
                      values.append(value)
  
                  facet = FacetResult(
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
383
384
                      field=display_field,
                      label=display_field,
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
385
386
387
388
389
390
391
392
393
394
                      type="range",
                      values=values
                  )
                  facets.append(facet)
  
          return facets
  
      @staticmethod
      def generate_suggestions(
          query: str,
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
395
          results: List[SpuResult]
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
      ) -> List[str]:
          """
          Generate search suggestions.
  
          Args:
              query: Original search query
              results: Search results
  
          Returns:
              List of suggestion strings (currently returns empty list)
          """
          # TODO: Implement suggestion generation logic
          return []
  
      @staticmethod
      def generate_related_searches(
          query: str,
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
413
          results: List[SpuResult]
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
414
415
416
417
418
419
420
421
422
423
424
425
426
      ) -> List[str]:
          """
          Generate related searches.
  
          Args:
              query: Original search query
              results: Search results
  
          Returns:
              List of related search strings (currently returns empty list)
          """
          # TODO: Implement related search generation logic
          return []