Blame view

indexer/spu_transformer.py 20 KB
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
1
2
3
  """
  SPU data transformer for Shoplazza products.
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
4
  Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
5
6
7
8
9
10
11
  """
  
  import pandas as pd
  import numpy as np
  from typing import Dict, Any, List, Optional
  from sqlalchemy import create_engine, text
  from utils.db_connector import create_db_connection
33839b37   tangwang   属性值参与搜索:
12
  from config import ConfigLoader
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  
  
  class SPUTransformer:
      """Transform SPU and SKU data into SPU-level ES documents."""
  
      def __init__(
          self,
          db_engine: Any,
          tenant_id: str
      ):
          """
          Initialize SPU transformer.
  
          Args:
              db_engine: SQLAlchemy database engine
              tenant_id: Tenant ID for filtering data
          """
          self.db_engine = db_engine
          self.tenant_id = tenant_id
33839b37   tangwang   属性值参与搜索:
32
33
34
35
36
37
38
39
40
          
          # Load configuration to get searchable_option_dimensions
          try:
              config_loader = ConfigLoader()
              config = config_loader.load_config()
              self.searchable_option_dimensions = config.spu_config.searchable_option_dimensions
          except Exception as e:
              print(f"Warning: Failed to load config, using default searchable_option_dimensions: {e}")
              self.searchable_option_dimensions = ['option1', 'option2', 'option3']
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
41
42
43
44
45
46
47
48
49
50
  
      def load_spu_data(self) -> pd.DataFrame:
          """
          Load SPU data from MySQL.
  
          Returns:
              DataFrame with SPU data
          """
          query = text("""
              SELECT 
5dcddc06   tangwang   索引重构
51
52
                  id, shop_id, shoplazza_id, title, brief, description,
                  spu, vendor, vendor_url,
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
53
                  image_src, image_width, image_height, image_path, image_alt,
5dcddc06   tangwang   索引重构
54
55
56
                  tags, note, category, category_id, category_google_id,
                  category_level, category_path,
                  tenant_id, creator, create_time, updater, update_time, deleted
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
57
58
59
60
61
62
63
              FROM shoplazza_product_spu
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
8cff1628   tangwang   tenant2 1w测试数据 mo...
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
          # Debug: Check if there's any data for this tenant_id
          if len(df) == 0:
              debug_query = text("""
                  SELECT 
                      COUNT(*) as total_count,
                      SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
                      SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
                  FROM shoplazza_product_spu
                  WHERE tenant_id = :tenant_id
              """)
              with self.db_engine.connect() as conn:
                  debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
              if not debug_df.empty:
                  total = debug_df.iloc[0]['total_count']
                  active = debug_df.iloc[0]['active_count']
                  deleted = debug_df.iloc[0]['deleted_count']
                  print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
              
              # Check what tenant_ids exist in the table
              tenant_check_query = text("""
                  SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
                  FROM shoplazza_product_spu
                  GROUP BY tenant_id
                  ORDER BY tenant_id
                  LIMIT 10
              """)
              with self.db_engine.connect() as conn:
                  tenant_df = pd.read_sql(tenant_check_query, conn)
              if not tenant_df.empty:
                  print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
                  for _, row in tenant_df.iterrows():
                      print(f"  tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
          
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
          return df
  
      def load_sku_data(self) -> pd.DataFrame:
          """
          Load SKU data from MySQL.
  
          Returns:
              DataFrame with SKU data
          """
          query = text("""
              SELECT 
                  id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
                  shoplazza_image_id, title, sku, barcode, position,
                  price, compare_at_price, cost_price,
                  option1, option2, option3,
                  inventory_quantity, weight, weight_unit, image_src,
                  wholesale_price, note, extend,
                  shoplazza_created_at, shoplazza_updated_at, tenant_id,
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_sku
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
8cff1628   tangwang   tenant2 1w测试数据 mo...
123
124
          print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
          
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
125
126
          return df
  
5dcddc06   tangwang   索引重构
127
128
129
130
131
132
133
134
135
136
      def load_option_data(self) -> pd.DataFrame:
          """
          Load option data from MySQL.
  
          Returns:
              DataFrame with option data (name, position for each SPU)
          """
          query = text("""
              SELECT 
                  id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
bf89b597   tangwang   feat(search): ada...
137
                  position, name, `values`, tenant_id,
5dcddc06   tangwang   索引重构
138
139
140
141
142
143
144
145
146
147
148
149
150
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_option
              WHERE tenant_id = :tenant_id AND deleted = 0
              ORDER BY spu_id, position
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
          print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
          
          return df
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
151
152
153
154
155
156
157
158
159
160
      def transform_batch(self) -> List[Dict[str, Any]]:
          """
          Transform SPU and SKU data into ES documents.
  
          Returns:
              List of SPU-level ES documents
          """
          # Load data
          spu_df = self.load_spu_data()
          sku_df = self.load_sku_data()
5dcddc06   tangwang   索引重构
161
          option_df = self.load_option_data()
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
162
163
164
165
166
167
  
          if spu_df.empty:
              return []
  
          # Group SKUs by SPU
          sku_groups = sku_df.groupby('spu_id')
5dcddc06   tangwang   索引重构
168
169
170
          
          # Group options by SPU
          option_groups = option_df.groupby('spu_id') if not option_df.empty else None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
171
172
173
174
175
176
177
178
  
          documents = []
          for _, spu_row in spu_df.iterrows():
              spu_id = spu_row['id']
              
              # Get SKUs for this SPU
              skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
              
5dcddc06   tangwang   索引重构
179
180
181
              # Get options for this SPU
              options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
              
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
182
              # Transform to ES document
5dcddc06   tangwang   索引重构
183
              doc = self._transform_spu_to_doc(spu_row, skus, options)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
184
185
186
187
188
189
190
191
              if doc:
                  documents.append(doc)
  
          return documents
  
      def _transform_spu_to_doc(
          self,
          spu_row: pd.Series,
5dcddc06   tangwang   索引重构
192
193
          skus: pd.DataFrame,
          options: pd.DataFrame
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
194
195
196
197
198
199
200
      ) -> Optional[Dict[str, Any]]:
          """
          Transform a single SPU row and its SKUs into an ES document.
  
          Args:
              spu_row: SPU row from database
              skus: DataFrame with SKUs for this SPU
5dcddc06   tangwang   索引重构
201
              options: DataFrame with options for this SPU
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
202
203
204
205
206
207
208
209
210
  
          Returns:
              ES document or None if transformation fails
          """
          doc = {}
  
          # Tenant ID (required)
          doc['tenant_id'] = str(self.tenant_id)
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
211
212
          # SPU ID
          doc['spu_id'] = str(spu_row['id'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
213
  
5dcddc06   tangwang   索引重构
214
          # 文本相关性相关字段(中英文双语,暂时只填充中文)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
215
          if pd.notna(spu_row.get('title')):
5dcddc06   tangwang   索引重构
216
217
              doc['title_zh'] = str(spu_row['title'])
          doc['title_en'] = None  # 暂时设为空
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
218
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
219
          if pd.notna(spu_row.get('brief')):
5dcddc06   tangwang   索引重构
220
221
              doc['brief_zh'] = str(spu_row['brief'])
          doc['brief_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
222
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
223
          if pd.notna(spu_row.get('description')):
5dcddc06   tangwang   索引重构
224
225
              doc['description_zh'] = str(spu_row['description'])
          doc['description_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
226
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
227
          if pd.notna(spu_row.get('vendor')):
5dcddc06   tangwang   索引重构
228
229
              doc['vendor_zh'] = str(spu_row['vendor'])
          doc['vendor_en'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
230
231
232
  
          # Tags
          if pd.notna(spu_row.get('tags')):
5dcddc06   tangwang   索引重构
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
              # Tags是逗号分隔的字符串,需要转换为数组
              tags_str = str(spu_row['tags'])
              doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]
  
          # Category相关字段
          if pd.notna(spu_row.get('category_path')):
              category_path = str(spu_row['category_path'])
              doc['category_path_zh'] = category_path
              doc['category_path_en'] = None  # 暂时设为空
              
              # 解析category_path获取多层级分类名称
              path_parts = category_path.split('/')
              if len(path_parts) > 0:
                  doc['category1_name'] = path_parts[0].strip()
              if len(path_parts) > 1:
                  doc['category2_name'] = path_parts[1].strip()
              if len(path_parts) > 2:
                  doc['category3_name'] = path_parts[2].strip()
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
          elif pd.notna(spu_row.get('category')):
              # 如果category_path为空,使用category字段作为category1_name的备选
              category = str(spu_row['category'])
              doc['category_name_zh'] = category
              doc['category_name_en'] = None
              doc['category_name'] = category
              
              # 尝试从category字段解析多级分类
              if '/' in category:
                  path_parts = category.split('/')
                  if len(path_parts) > 0:
                      doc['category1_name'] = path_parts[0].strip()
                  if len(path_parts) > 1:
                      doc['category2_name'] = path_parts[1].strip()
                  if len(path_parts) > 2:
                      doc['category3_name'] = path_parts[2].strip()
              else:
                  # 如果category不包含"/",直接作为category1_name
                  doc['category1_name'] = category.strip()
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
270
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
271
          if pd.notna(spu_row.get('category')):
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
272
              # 确保category相关字段都被设置(如果前面没有设置)
5dcddc06   tangwang   索引重构
273
              category_name = str(spu_row['category'])
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
274
275
276
277
278
279
              if 'category_name_zh' not in doc:
                  doc['category_name_zh'] = category_name
              if 'category_name_en' not in doc:
                  doc['category_name_en'] = None
              if 'category_name' not in doc:
                  doc['category_name'] = category_name
5dcddc06   tangwang   索引重构
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
  
          if pd.notna(spu_row.get('category_id')):
              doc['category_id'] = str(int(spu_row['category_id']))
  
          if pd.notna(spu_row.get('category_level')):
              doc['category_level'] = int(spu_row['category_level'])
  
          # Option名称(从option表获取)
          if not options.empty:
              # 按position排序获取option名称
              sorted_options = options.sort_values('position')
              if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
                  doc['option1_name'] = str(sorted_options.iloc[0]['name'])
              if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
                  doc['option2_name'] = str(sorted_options.iloc[1]['name'])
              if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
                  doc['option3_name'] = str(sorted_options.iloc[2]['name'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
297
298
299
300
301
302
303
304
  
          # Image URL
          if pd.notna(spu_row.get('image_src')):
              image_src = str(spu_row['image_src'])
              if not image_src.startswith('http'):
                  image_src = f"//{image_src}" if image_src.startswith('//') else image_src
              doc['image_url'] = image_src
  
5dcddc06   tangwang   索引重构
305
          # Process SKUs and build specifications
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
306
          skus_list = []
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
307
308
          prices = []
          compare_prices = []
5dcddc06   tangwang   索引重构
309
310
311
312
313
314
315
316
317
318
319
320
321
322
          sku_prices = []
          sku_weights = []
          sku_weight_units = []
          total_inventory = 0
          specifications = []
  
          # 构建option名称映射(position -> name)
          option_name_map = {}
          if not options.empty:
              for _, opt_row in options.iterrows():
                  position = opt_row.get('position')
                  name = opt_row.get('name')
                  if pd.notna(position) and pd.notna(name):
                      option_name_map[int(position)] = str(name)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
323
324
  
          for _, sku_row in skus.iterrows():
5dcddc06   tangwang   索引重构
325
              sku_data = self._transform_sku_row(sku_row, option_name_map)
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
326
327
              if sku_data:
                  skus_list.append(sku_data)
5dcddc06   tangwang   索引重构
328
329
                  
                  # 收集价格信息
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
330
                  if 'price' in sku_data and sku_data['price'] is not None:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
331
                      try:
5dcddc06   tangwang   索引重构
332
333
334
                          price_val = float(sku_data['price'])
                          prices.append(price_val)
                          sku_prices.append(price_val)
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
335
336
                      except (ValueError, TypeError):
                          pass
5dcddc06   tangwang   索引重构
337
                  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
338
                  if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
339
                      try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
340
                          compare_prices.append(float(sku_data['compare_at_price']))
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
341
342
                      except (ValueError, TypeError):
                          pass
5dcddc06   tangwang   索引重构
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                  
                  # 收集重量信息
                  if 'weight' in sku_data and sku_data['weight'] is not None:
                      try:
                          sku_weights.append(int(float(sku_data['weight'])))
                      except (ValueError, TypeError):
                          pass
                  
                  if 'weight_unit' in sku_data and sku_data['weight_unit']:
                      sku_weight_units.append(str(sku_data['weight_unit']))
                  
                  # 收集库存信息
                  if 'stock' in sku_data and sku_data['stock'] is not None:
                      try:
                          total_inventory += int(sku_data['stock'])
                      except (ValueError, TypeError):
                          pass
                  
                  # 构建specifications(从SKU的option值和option表的name)
                  sku_id = str(sku_row['id'])
                  if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[1],
                          'value': str(sku_row['option1'])
                      })
                  if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[2],
                          'value': str(sku_row['option2'])
                      })
                  if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
                      specifications.append({
                          'sku_id': sku_id,
                          'name': option_name_map[3],
                          'value': str(sku_row['option3'])
                      })
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
381
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
382
          doc['skus'] = skus_list
5dcddc06   tangwang   索引重构
383
          doc['specifications'] = specifications
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
384
  
33839b37   tangwang   属性值参与搜索:
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
          # 提取option值(根据配置的searchable_option_dimensions)
          # 从子SKU的option1_value, option2_value, option3_value中提取去重后的值
          option1_values = []
          option2_values = []
          option3_values = []
          
          for _, sku_row in skus.iterrows():
              if pd.notna(sku_row.get('option1')):
                  option1_values.append(str(sku_row['option1']))
              if pd.notna(sku_row.get('option2')):
                  option2_values.append(str(sku_row['option2']))
              if pd.notna(sku_row.get('option3')):
                  option3_values.append(str(sku_row['option3']))
          
          # 去重并根据配置决定是否写入索引
          if 'option1' in self.searchable_option_dimensions:
              doc['option1_values'] = list(set(option1_values)) if option1_values else []
          else:
              doc['option1_values'] = []
          
          if 'option2' in self.searchable_option_dimensions:
              doc['option2_values'] = list(set(option2_values)) if option2_values else []
          else:
              doc['option2_values'] = []
          
          if 'option3' in self.searchable_option_dimensions:
              doc['option3_values'] = list(set(option3_values)) if option3_values else []
          else:
              doc['option3_values'] = []
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
415
416
417
418
419
420
421
422
423
424
425
426
427
          # Calculate price ranges
          if prices:
              doc['min_price'] = float(min(prices))
              doc['max_price'] = float(max(prices))
          else:
              doc['min_price'] = 0.0
              doc['max_price'] = 0.0
  
          if compare_prices:
              doc['compare_at_price'] = float(max(compare_prices))
          else:
              doc['compare_at_price'] = None
  
5dcddc06   tangwang   索引重构
428
429
430
431
432
433
434
435
436
437
438
439
440
          # SKU扁平化字段
          doc['sku_prices'] = sku_prices
          doc['sku_weights'] = sku_weights
          doc['sku_weight_units'] = list(set(sku_weight_units))  # 去重
          doc['total_inventory'] = total_inventory
  
          # Image URL
          if pd.notna(spu_row.get('image_src')):
              image_src = str(spu_row['image_src'])
              if not image_src.startswith('http'):
                  image_src = f"//{image_src}" if image_src.startswith('//') else image_src
              doc['image_url'] = image_src
  
cd3799c6   tangwang   tenant2 1w测试数据 mo...
441
442
443
444
445
446
447
448
449
450
451
452
453
454
          # Time fields - convert datetime to ISO format string for ES DATE type
          if pd.notna(spu_row.get('create_time')):
              create_time = spu_row['create_time']
              if hasattr(create_time, 'isoformat'):
                  doc['create_time'] = create_time.isoformat()
              else:
                  doc['create_time'] = str(create_time)
          
          if pd.notna(spu_row.get('update_time')):
              update_time = spu_row['update_time']
              if hasattr(update_time, 'isoformat'):
                  doc['update_time'] = update_time.isoformat()
              else:
                  doc['update_time'] = str(update_time)
cd3799c6   tangwang   tenant2 1w测试数据 mo...
455
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
456
457
          return doc
  
5dcddc06   tangwang   索引重构
458
      def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
459
          """
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
460
          Transform a SKU row into a SKU object.
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
461
462
463
  
          Args:
              sku_row: SKU row from database
5dcddc06   tangwang   索引重构
464
              option_name_map: Mapping from position to option name
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
465
466
  
          Returns:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
467
              SKU dictionary or None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
468
          """
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
469
          sku_data = {}
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
470
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
471
472
          # SKU ID
          sku_data['sku_id'] = str(sku_row['id'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
473
  
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
474
475
476
          # Price
          if pd.notna(sku_row.get('price')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
477
                  sku_data['price'] = float(sku_row['price'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
478
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
479
                  sku_data['price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
480
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
481
              sku_data['price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
482
483
484
485
  
          # Compare at price
          if pd.notna(sku_row.get('compare_at_price')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
486
                  sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
487
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
488
                  sku_data['compare_at_price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
489
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
490
              sku_data['compare_at_price'] = None
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
491
  
5dcddc06   tangwang   索引重构
492
          # SKU Code
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
493
          if pd.notna(sku_row.get('sku')):
5dcddc06   tangwang   索引重构
494
              sku_data['sku_code'] = str(sku_row['sku'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
495
496
497
498
  
          # Stock
          if pd.notna(sku_row.get('inventory_quantity')):
              try:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
499
                  sku_data['stock'] = int(sku_row['inventory_quantity'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
500
              except (ValueError, TypeError):
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
501
                  sku_data['stock'] = 0
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
502
          else:
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
503
              sku_data['stock'] = 0
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
504
  
5dcddc06   tangwang   索引重构
505
506
507
508
509
510
511
512
513
514
515
516
517
518
          # Weight
          if pd.notna(sku_row.get('weight')):
              try:
                  sku_data['weight'] = float(sku_row['weight'])
              except (ValueError, TypeError):
                  sku_data['weight'] = None
          else:
              sku_data['weight'] = None
  
          # Weight unit
          if pd.notna(sku_row.get('weight_unit')):
              sku_data['weight_unit'] = str(sku_row['weight_unit'])
  
          # Option values
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
519
          if pd.notna(sku_row.get('option1')):
5dcddc06   tangwang   索引重构
520
              sku_data['option1_value'] = str(sku_row['option1'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
521
          if pd.notna(sku_row.get('option2')):
5dcddc06   tangwang   索引重构
522
              sku_data['option2_value'] = str(sku_row['option2'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
523
          if pd.notna(sku_row.get('option3')):
5dcddc06   tangwang   索引重构
524
              sku_data['option3_value'] = str(sku_row['option3'])
a10a89a3   tangwang   构造测试数据用于测试分类 和 三种...
525
          
5dcddc06   tangwang   索引重构
526
527
528
          # Image src
          if pd.notna(sku_row.get('image_src')):
              sku_data['image_src'] = str(sku_row['image_src'])
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
529
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
530
          return sku_data
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...