1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
1
2
3
|
"""
SPU data transformer for Shoplazza products.
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
4
|
Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested skus.
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
5
6
7
8
9
10
11
|
"""
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from sqlalchemy import create_engine, text
from utils.db_connector import create_db_connection
|
33839b37
tangwang
属性值参与搜索:
|
12
|
from config import ConfigLoader
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
class SPUTransformer:
"""Transform SPU and SKU data into SPU-level ES documents."""
def __init__(
self,
db_engine: Any,
tenant_id: str
):
"""
Initialize SPU transformer.
Args:
db_engine: SQLAlchemy database engine
tenant_id: Tenant ID for filtering data
"""
self.db_engine = db_engine
self.tenant_id = tenant_id
|
33839b37
tangwang
属性值参与搜索:
|
32
33
34
35
36
37
38
39
40
|
# Load configuration to get searchable_option_dimensions
try:
config_loader = ConfigLoader()
config = config_loader.load_config()
self.searchable_option_dimensions = config.spu_config.searchable_option_dimensions
except Exception as e:
print(f"Warning: Failed to load config, using default searchable_option_dimensions: {e}")
self.searchable_option_dimensions = ['option1', 'option2', 'option3']
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
41
42
43
44
45
46
47
48
49
50
|
def load_spu_data(self) -> pd.DataFrame:
"""
Load SPU data from MySQL.
Returns:
DataFrame with SPU data
"""
query = text("""
SELECT
|
5dcddc06
tangwang
索引重构
|
51
52
|
id, shop_id, shoplazza_id, title, brief, description,
spu, vendor, vendor_url,
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
53
|
image_src, image_width, image_height, image_path, image_alt,
|
5dcddc06
tangwang
索引重构
|
54
55
56
|
tags, note, category, category_id, category_google_id,
category_level, category_path,
tenant_id, creator, create_time, updater, update_time, deleted
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
57
58
59
60
61
62
63
|
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
|
8cff1628
tangwang
tenant2 1w测试数据 mo...
|
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
# Debug: Check if there's any data for this tenant_id
if len(df) == 0:
debug_query = text("""
SELECT
COUNT(*) as total_count,
SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active_count,
SUM(CASE WHEN deleted = 1 THEN 1 ELSE 0 END) as deleted_count
FROM shoplazza_product_spu
WHERE tenant_id = :tenant_id
""")
with self.db_engine.connect() as conn:
debug_df = pd.read_sql(debug_query, conn, params={"tenant_id": self.tenant_id})
if not debug_df.empty:
total = debug_df.iloc[0]['total_count']
active = debug_df.iloc[0]['active_count']
deleted = debug_df.iloc[0]['deleted_count']
print(f"DEBUG: tenant_id={self.tenant_id}: total={total}, active={active}, deleted={deleted}")
# Check what tenant_ids exist in the table
tenant_check_query = text("""
SELECT tenant_id, COUNT(*) as count, SUM(CASE WHEN deleted = 0 THEN 1 ELSE 0 END) as active
FROM shoplazza_product_spu
GROUP BY tenant_id
ORDER BY tenant_id
LIMIT 10
""")
with self.db_engine.connect() as conn:
tenant_df = pd.read_sql(tenant_check_query, conn)
if not tenant_df.empty:
print(f"DEBUG: Available tenant_ids in shoplazza_product_spu:")
for _, row in tenant_df.iterrows():
print(f" tenant_id={row['tenant_id']}: total={row['count']}, active={row['active']}")
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
return df
def load_sku_data(self) -> pd.DataFrame:
"""
Load SKU data from MySQL.
Returns:
DataFrame with SKU data
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
shoplazza_image_id, title, sku, barcode, position,
price, compare_at_price, cost_price,
option1, option2, option3,
inventory_quantity, weight, weight_unit, image_src,
wholesale_price, note, extend,
shoplazza_created_at, shoplazza_updated_at, tenant_id,
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_sku
WHERE tenant_id = :tenant_id AND deleted = 0
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
|
8cff1628
tangwang
tenant2 1w测试数据 mo...
|
123
124
|
print(f"DEBUG: Loaded {len(df)} SKU records for tenant_id={self.tenant_id}")
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
125
126
|
return df
|
5dcddc06
tangwang
索引重构
|
127
128
129
130
131
132
133
134
135
136
|
def load_option_data(self) -> pd.DataFrame:
"""
Load option data from MySQL.
Returns:
DataFrame with option data (name, position for each SPU)
"""
query = text("""
SELECT
id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
|
bf89b597
tangwang
feat(search): ada...
|
137
|
position, name, `values`, tenant_id,
|
5dcddc06
tangwang
索引重构
|
138
139
140
141
142
143
144
145
146
147
148
149
150
|
creator, create_time, updater, update_time, deleted
FROM shoplazza_product_option
WHERE tenant_id = :tenant_id AND deleted = 0
ORDER BY spu_id, position
""")
with self.db_engine.connect() as conn:
df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
print(f"DEBUG: Loaded {len(df)} option records for tenant_id={self.tenant_id}")
return df
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
151
152
153
154
155
156
157
158
159
160
|
def transform_batch(self) -> List[Dict[str, Any]]:
"""
Transform SPU and SKU data into ES documents.
Returns:
List of SPU-level ES documents
"""
# Load data
spu_df = self.load_spu_data()
sku_df = self.load_sku_data()
|
5dcddc06
tangwang
索引重构
|
161
|
option_df = self.load_option_data()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
162
163
164
165
166
167
|
if spu_df.empty:
return []
# Group SKUs by SPU
sku_groups = sku_df.groupby('spu_id')
|
5dcddc06
tangwang
索引重构
|
168
169
170
|
# Group options by SPU
option_groups = option_df.groupby('spu_id') if not option_df.empty else None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
171
172
173
174
175
176
177
178
|
documents = []
for _, spu_row in spu_df.iterrows():
spu_id = spu_row['id']
# Get SKUs for this SPU
skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
|
5dcddc06
tangwang
索引重构
|
179
180
181
|
# Get options for this SPU
options = option_groups.get_group(spu_id) if option_groups and spu_id in option_groups.groups else pd.DataFrame()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
182
|
# Transform to ES document
|
5dcddc06
tangwang
索引重构
|
183
|
doc = self._transform_spu_to_doc(spu_row, skus, options)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
184
185
186
187
188
189
190
191
|
if doc:
documents.append(doc)
return documents
def _transform_spu_to_doc(
self,
spu_row: pd.Series,
|
5dcddc06
tangwang
索引重构
|
192
193
|
skus: pd.DataFrame,
options: pd.DataFrame
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
194
195
196
197
198
199
200
|
) -> Optional[Dict[str, Any]]:
"""
Transform a single SPU row and its SKUs into an ES document.
Args:
spu_row: SPU row from database
skus: DataFrame with SKUs for this SPU
|
5dcddc06
tangwang
索引重构
|
201
|
options: DataFrame with options for this SPU
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
202
203
204
205
206
207
208
209
210
|
Returns:
ES document or None if transformation fails
"""
doc = {}
# Tenant ID (required)
doc['tenant_id'] = str(self.tenant_id)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
211
212
|
# SPU ID
doc['spu_id'] = str(spu_row['id'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
213
|
|
5dcddc06
tangwang
索引重构
|
214
|
# 文本相关性相关字段(中英文双语,暂时只填充中文)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
215
|
if pd.notna(spu_row.get('title')):
|
5dcddc06
tangwang
索引重构
|
216
217
|
doc['title_zh'] = str(spu_row['title'])
doc['title_en'] = None # 暂时设为空
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
218
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
219
|
if pd.notna(spu_row.get('brief')):
|
5dcddc06
tangwang
索引重构
|
220
221
|
doc['brief_zh'] = str(spu_row['brief'])
doc['brief_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
222
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
223
|
if pd.notna(spu_row.get('description')):
|
5dcddc06
tangwang
索引重构
|
224
225
|
doc['description_zh'] = str(spu_row['description'])
doc['description_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
226
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
227
|
if pd.notna(spu_row.get('vendor')):
|
5dcddc06
tangwang
索引重构
|
228
229
|
doc['vendor_zh'] = str(spu_row['vendor'])
doc['vendor_en'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
230
231
232
|
# Tags
if pd.notna(spu_row.get('tags')):
|
5dcddc06
tangwang
索引重构
|
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
# Tags是逗号分隔的字符串,需要转换为数组
tags_str = str(spu_row['tags'])
doc['tags'] = [tag.strip() for tag in tags_str.split(',') if tag.strip()]
# Category相关字段
if pd.notna(spu_row.get('category_path')):
category_path = str(spu_row['category_path'])
doc['category_path_zh'] = category_path
doc['category_path_en'] = None # 暂时设为空
# 解析category_path获取多层级分类名称
path_parts = category_path.split('/')
if len(path_parts) > 0:
doc['category1_name'] = path_parts[0].strip()
if len(path_parts) > 1:
doc['category2_name'] = path_parts[1].strip()
if len(path_parts) > 2:
doc['category3_name'] = path_parts[2].strip()
|
a10a89a3
tangwang
构造测试数据用于测试分类 和 三种...
|
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
elif pd.notna(spu_row.get('category')):
# 如果category_path为空,使用category字段作为category1_name的备选
category = str(spu_row['category'])
doc['category_name_zh'] = category
doc['category_name_en'] = None
doc['category_name'] = category
# 尝试从category字段解析多级分类
if '/' in category:
path_parts = category.split('/')
if len(path_parts) > 0:
doc['category1_name'] = path_parts[0].strip()
if len(path_parts) > 1:
doc['category2_name'] = path_parts[1].strip()
if len(path_parts) > 2:
doc['category3_name'] = path_parts[2].strip()
else:
# 如果category不包含"/",直接作为category1_name
doc['category1_name'] = category.strip()
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
270
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
271
|
if pd.notna(spu_row.get('category')):
|
a10a89a3
tangwang
构造测试数据用于测试分类 和 三种...
|
272
|
# 确保category相关字段都被设置(如果前面没有设置)
|
5dcddc06
tangwang
索引重构
|
273
|
category_name = str(spu_row['category'])
|
a10a89a3
tangwang
构造测试数据用于测试分类 和 三种...
|
274
275
276
277
278
279
|
if 'category_name_zh' not in doc:
doc['category_name_zh'] = category_name
if 'category_name_en' not in doc:
doc['category_name_en'] = None
if 'category_name' not in doc:
doc['category_name'] = category_name
|
5dcddc06
tangwang
索引重构
|
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
if pd.notna(spu_row.get('category_id')):
doc['category_id'] = str(int(spu_row['category_id']))
if pd.notna(spu_row.get('category_level')):
doc['category_level'] = int(spu_row['category_level'])
# Option名称(从option表获取)
if not options.empty:
# 按position排序获取option名称
sorted_options = options.sort_values('position')
if len(sorted_options) > 0 and pd.notna(sorted_options.iloc[0].get('name')):
doc['option1_name'] = str(sorted_options.iloc[0]['name'])
if len(sorted_options) > 1 and pd.notna(sorted_options.iloc[1].get('name')):
doc['option2_name'] = str(sorted_options.iloc[1]['name'])
if len(sorted_options) > 2 and pd.notna(sorted_options.iloc[2].get('name')):
doc['option3_name'] = str(sorted_options.iloc[2]['name'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
297
298
299
300
301
302
303
304
|
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
|
5dcddc06
tangwang
索引重构
|
305
|
# Process SKUs and build specifications
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
306
|
skus_list = []
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
307
308
|
prices = []
compare_prices = []
|
5dcddc06
tangwang
索引重构
|
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
sku_prices = []
sku_weights = []
sku_weight_units = []
total_inventory = 0
specifications = []
# 构建option名称映射(position -> name)
option_name_map = {}
if not options.empty:
for _, opt_row in options.iterrows():
position = opt_row.get('position')
name = opt_row.get('name')
if pd.notna(position) and pd.notna(name):
option_name_map[int(position)] = str(name)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
323
324
|
for _, sku_row in skus.iterrows():
|
5dcddc06
tangwang
索引重构
|
325
|
sku_data = self._transform_sku_row(sku_row, option_name_map)
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
326
327
|
if sku_data:
skus_list.append(sku_data)
|
5dcddc06
tangwang
索引重构
|
328
329
|
# 收集价格信息
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
330
|
if 'price' in sku_data and sku_data['price'] is not None:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
331
|
try:
|
5dcddc06
tangwang
索引重构
|
332
333
334
|
price_val = float(sku_data['price'])
prices.append(price_val)
sku_prices.append(price_val)
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
335
336
|
except (ValueError, TypeError):
pass
|
5dcddc06
tangwang
索引重构
|
337
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
338
|
if 'compare_at_price' in sku_data and sku_data['compare_at_price'] is not None:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
339
|
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
340
|
compare_prices.append(float(sku_data['compare_at_price']))
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
341
342
|
except (ValueError, TypeError):
pass
|
5dcddc06
tangwang
索引重构
|
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
# 收集重量信息
if 'weight' in sku_data and sku_data['weight'] is not None:
try:
sku_weights.append(int(float(sku_data['weight'])))
except (ValueError, TypeError):
pass
if 'weight_unit' in sku_data and sku_data['weight_unit']:
sku_weight_units.append(str(sku_data['weight_unit']))
# 收集库存信息
if 'stock' in sku_data and sku_data['stock'] is not None:
try:
total_inventory += int(sku_data['stock'])
except (ValueError, TypeError):
pass
# 构建specifications(从SKU的option值和option表的name)
sku_id = str(sku_row['id'])
if pd.notna(sku_row.get('option1')) and 1 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[1],
'value': str(sku_row['option1'])
})
if pd.notna(sku_row.get('option2')) and 2 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[2],
'value': str(sku_row['option2'])
})
if pd.notna(sku_row.get('option3')) and 3 in option_name_map:
specifications.append({
'sku_id': sku_id,
'name': option_name_map[3],
'value': str(sku_row['option3'])
})
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
381
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
382
|
doc['skus'] = skus_list
|
5dcddc06
tangwang
索引重构
|
383
|
doc['specifications'] = specifications
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
384
|
|
33839b37
tangwang
属性值参与搜索:
|
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
# 提取option值(根据配置的searchable_option_dimensions)
# 从子SKU的option1_value, option2_value, option3_value中提取去重后的值
option1_values = []
option2_values = []
option3_values = []
for _, sku_row in skus.iterrows():
if pd.notna(sku_row.get('option1')):
option1_values.append(str(sku_row['option1']))
if pd.notna(sku_row.get('option2')):
option2_values.append(str(sku_row['option2']))
if pd.notna(sku_row.get('option3')):
option3_values.append(str(sku_row['option3']))
# 去重并根据配置决定是否写入索引
if 'option1' in self.searchable_option_dimensions:
doc['option1_values'] = list(set(option1_values)) if option1_values else []
else:
doc['option1_values'] = []
if 'option2' in self.searchable_option_dimensions:
doc['option2_values'] = list(set(option2_values)) if option2_values else []
else:
doc['option2_values'] = []
if 'option3' in self.searchable_option_dimensions:
doc['option3_values'] = list(set(option3_values)) if option3_values else []
else:
doc['option3_values'] = []
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
415
416
417
418
419
420
421
422
423
424
425
426
427
|
# Calculate price ranges
if prices:
doc['min_price'] = float(min(prices))
doc['max_price'] = float(max(prices))
else:
doc['min_price'] = 0.0
doc['max_price'] = 0.0
if compare_prices:
doc['compare_at_price'] = float(max(compare_prices))
else:
doc['compare_at_price'] = None
|
5dcddc06
tangwang
索引重构
|
428
429
430
431
432
433
434
435
436
437
438
439
440
|
# SKU扁平化字段
doc['sku_prices'] = sku_prices
doc['sku_weights'] = sku_weights
doc['sku_weight_units'] = list(set(sku_weight_units)) # 去重
doc['total_inventory'] = total_inventory
# Image URL
if pd.notna(spu_row.get('image_src')):
image_src = str(spu_row['image_src'])
if not image_src.startswith('http'):
image_src = f"//{image_src}" if image_src.startswith('//') else image_src
doc['image_url'] = image_src
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
# Time fields - convert datetime to ISO format string for ES DATE type
if pd.notna(spu_row.get('create_time')):
create_time = spu_row['create_time']
if hasattr(create_time, 'isoformat'):
doc['create_time'] = create_time.isoformat()
else:
doc['create_time'] = str(create_time)
if pd.notna(spu_row.get('update_time')):
update_time = spu_row['update_time']
if hasattr(update_time, 'isoformat'):
doc['update_time'] = update_time.isoformat()
else:
doc['update_time'] = str(update_time)
|
cd3799c6
tangwang
tenant2 1w测试数据 mo...
|
455
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
456
457
|
return doc
|
5dcddc06
tangwang
索引重构
|
458
|
def _transform_sku_row(self, sku_row: pd.Series, option_name_map: Dict[int, str] = None) -> Optional[Dict[str, Any]]:
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
459
|
"""
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
460
|
Transform a SKU row into a SKU object.
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
461
462
463
|
Args:
sku_row: SKU row from database
|
5dcddc06
tangwang
索引重构
|
464
|
option_name_map: Mapping from position to option name
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
465
466
|
Returns:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
467
|
SKU dictionary or None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
468
|
"""
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
469
|
sku_data = {}
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
470
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
471
472
|
# SKU ID
sku_data['sku_id'] = str(sku_row['id'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
473
|
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
474
475
476
|
# Price
if pd.notna(sku_row.get('price')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
477
|
sku_data['price'] = float(sku_row['price'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
478
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
479
|
sku_data['price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
480
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
481
|
sku_data['price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
482
483
484
485
|
# Compare at price
if pd.notna(sku_row.get('compare_at_price')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
486
|
sku_data['compare_at_price'] = float(sku_row['compare_at_price'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
487
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
488
|
sku_data['compare_at_price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
489
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
490
|
sku_data['compare_at_price'] = None
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
491
|
|
5dcddc06
tangwang
索引重构
|
492
|
# SKU Code
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
493
|
if pd.notna(sku_row.get('sku')):
|
5dcddc06
tangwang
索引重构
|
494
|
sku_data['sku_code'] = str(sku_row['sku'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
495
496
497
498
|
# Stock
if pd.notna(sku_row.get('inventory_quantity')):
try:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
499
|
sku_data['stock'] = int(sku_row['inventory_quantity'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
500
|
except (ValueError, TypeError):
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
501
|
sku_data['stock'] = 0
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
502
|
else:
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
503
|
sku_data['stock'] = 0
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
504
|
|
5dcddc06
tangwang
索引重构
|
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
# Weight
if pd.notna(sku_row.get('weight')):
try:
sku_data['weight'] = float(sku_row['weight'])
except (ValueError, TypeError):
sku_data['weight'] = None
else:
sku_data['weight'] = None
# Weight unit
if pd.notna(sku_row.get('weight_unit')):
sku_data['weight_unit'] = str(sku_row['weight_unit'])
# Option values
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
519
|
if pd.notna(sku_row.get('option1')):
|
5dcddc06
tangwang
索引重构
|
520
|
sku_data['option1_value'] = str(sku_row['option1'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
521
|
if pd.notna(sku_row.get('option2')):
|
5dcddc06
tangwang
索引重构
|
522
|
sku_data['option2_value'] = str(sku_row['option2'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
523
|
if pd.notna(sku_row.get('option3')):
|
5dcddc06
tangwang
索引重构
|
524
|
sku_data['option3_value'] = str(sku_row['option3'])
|
a10a89a3
tangwang
构造测试数据用于测试分类 和 三种...
|
525
|
|
5dcddc06
tangwang
索引重构
|
526
527
528
|
# Image src
if pd.notna(sku_row.get('image_src')):
sku_data['image_src'] = str(sku_row['image_src'])
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
529
|
|
cadc77b6
tangwang
索引字段名、变量名、API数据结构...
|
530
|
return sku_data
|
1f6d15fa
tangwang
重构:SPU级别索引、统一索引架构...
|
|
|