Blame view

api/models.py 12.5 KB
be52af70   tangwang   first commit
1
2
3
4
  """
  Request and response models for the API.
  """
  
6aa246be   tangwang   问题:Pydantic 应该能自动...
5
6
7
8
9
  from pydantic import BaseModel, Field, field_validator
  from typing import List, Dict, Any, Optional, Union, Literal
  
  
  class RangeFilter(BaseModel):
ff5325fa   tangwang   修复:直接在 Searcher 层...
10
11
12
13
14
      """范围过滤器(支持数值和日期时间字符串)"""
      gte: Optional[Union[float, str]] = Field(None, description="大于等于 (>=)。数值或ISO日期时间字符串")
      gt: Optional[Union[float, str]] = Field(None, description="大于 (>)。数值或ISO日期时间字符串")
      lte: Optional[Union[float, str]] = Field(None, description="小于等于 (<=)。数值或ISO日期时间字符串")
      lt: Optional[Union[float, str]] = Field(None, description="小于 (<)。数值或ISO日期时间字符串")
6aa246be   tangwang   问题:Pydantic 应该能自动...
15
16
17
18
19
20
21
22
23
24
25
      
      def model_post_init(self, __context):
          """确保至少指定一个边界值"""
          if not any([self.gte, self.gt, self.lte, self.lt]):
              raise ValueError('至少需要指定一个范围边界(gte, gt, lte, lt)')
      
      class Config:
          json_schema_extra = {
              "examples": [
                  {"gte": 50, "lte": 200},
                  {"gt": 100},
ff5325fa   tangwang   修复:直接在 Searcher 层...
26
27
                  {"lt": 50},
                  {"gte": "2023-01-01T00:00:00Z"}
6aa246be   tangwang   问题:Pydantic 应该能自动...
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
              ]
          }
  
  
  class FacetConfig(BaseModel):
      """分面配置(简化版)"""
      field: str = Field(..., description="分面字段名")
      size: int = Field(10, ge=1, le=100, description="返回的分面值数量")
      type: Literal["terms", "range"] = Field("terms", description="分面类型")
      ranges: Optional[List[Dict[str, Any]]] = Field(
          None,
          description="范围分面的范围定义(仅当 type='range' 时需要)"
      )
      
      class Config:
          json_schema_extra = {
              "examples": [
                  {
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
46
                      "field": "category.keyword",
6aa246be   tangwang   问题:Pydantic 应该能自动...
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                      "size": 15,
                      "type": "terms"
                  },
                  {
                      "field": "price",
                      "size": 4,
                      "type": "range",
                      "ranges": [
                          {"key": "0-50", "to": 50},
                          {"key": "50-100", "from": 50, "to": 100},
                          {"key": "100-200", "from": 100, "to": 200},
                          {"key": "200+", "from": 200}
                      ]
                  }
              ]
          }
be52af70   tangwang   first commit
63
64
65
  
  
  class SearchRequest(BaseModel):
6aa246be   tangwang   问题:Pydantic 应该能自动...
66
67
68
69
70
71
      """搜索请求模型(重构版)"""
      
      # 基础搜索参数
      query: str = Field(..., description="搜索查询字符串,支持布尔表达式(AND, OR, RANK, ANDNOT)")
      size: int = Field(10, ge=1, le=100, description="返回结果数量")
      from_: int = Field(0, ge=0, alias="from", description="分页偏移量")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
72
73
74
75
      language: Literal["zh", "en"] = Field(
          "zh",
          description="响应语言:'zh'(中文)或 'en'(英文),用于选择 title/description/vendor 等多语言字段"
      )
6aa246be   tangwang   问题:Pydantic 应该能自动...
76
77
78
79
80
81
82
83
      
      # 过滤器 - 精确匹配和多值匹配
      filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = Field(
          None,
          description="精确匹配过滤器。单值表示精确匹配,数组表示 OR 匹配(匹配任意一个值)",
          json_schema_extra={
              "examples": [
                  {
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
84
85
                      "category.keyword": ["玩具", "益智玩具"],
                      "vendor.keyword": "乐高",
6aa246be   tangwang   问题:Pydantic 应该能自动...
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                      "in_stock": True
                  }
              ]
          }
      )
      
      # 范围过滤器 - 数值范围
      range_filters: Optional[Dict[str, RangeFilter]] = Field(
          None,
          description="数值范围过滤器。支持 gte, gt, lte, lt 操作符",
          json_schema_extra={
              "examples": [
                  {
                      "price": {"gte": 50, "lte": 200},
                      "days_since_last_update": {"lte": 30}
                  }
              ]
          }
      )
      
      # 排序
cd3799c6   tangwang   tenant2 1w测试数据 mo...
107
      sort_by: Optional[str] = Field(None, description="排序字段名(如 'min_price', 'max_price', 'title')")
6aa246be   tangwang   问题:Pydantic 应该能自动...
108
109
110
111
112
113
114
115
116
      sort_order: Optional[str] = Field("desc", description="排序方向: 'asc'(升序)或 'desc'(降序)")
      
      # 分面搜索 - 简化接口
      facets: Optional[List[Union[str, FacetConfig]]] = Field(
          None,
          description="分面配置。可以是字段名列表(使用默认配置)或详细的分面配置对象",
          json_schema_extra={
              "examples": [
                  # 简单模式:只指定字段名,使用默认配置
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
117
                  ["category.keyword", "vendor.keyword"],
6aa246be   tangwang   问题:Pydantic 应该能自动...
118
119
                  # 高级模式:详细配置
                  [
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
120
                      {"field": "category.keyword", "size": 15},
6aa246be   tangwang   问题:Pydantic 应该能自动...
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                      {
                          "field": "price",
                          "type": "range",
                          "ranges": [
                              {"key": "0-50", "to": 50},
                              {"key": "50-100", "from": 50, "to": 100}
                          ]
                      }
                  ]
              ]
          }
      )
      
      # 高级选项
      min_score: Optional[float] = Field(None, ge=0, description="最小相关性分数阈值")
      highlight: bool = Field(False, description="是否高亮搜索关键词(暂不实现)")
      debug: bool = Field(False, description="是否返回调试信息")
      
      # 个性化参数(预留)
      user_id: Optional[str] = Field(None, description="用户ID,用于个性化搜索和推荐")
      session_id: Optional[str] = Field(None, description="会话ID,用于搜索分析")
be52af70   tangwang   first commit
142
143
144
  
  
  class ImageSearchRequest(BaseModel):
6aa246be   tangwang   问题:Pydantic 应该能自动...
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      """图片搜索请求模型"""
      image_url: str = Field(..., description="查询图片的 URL")
      size: int = Field(10, ge=1, le=100, description="返回结果数量")
      filters: Optional[Dict[str, Union[str, int, bool, List[Union[str, int]]]]] = None
      range_filters: Optional[Dict[str, RangeFilter]] = None
  
  
  class SearchSuggestRequest(BaseModel):
      """搜索建议请求模型(框架,暂不实现)"""
      query: str = Field(..., min_length=1, description="搜索查询字符串")
      size: int = Field(5, ge=1, le=20, description="返回建议数量")
      types: List[Literal["query", "product", "category", "brand"]] = Field(
          ["query"],
          description="建议类型:query(查询建议), product(商品建议), category(类目建议), brand(品牌建议)"
      )
  
  
  class FacetValue(BaseModel):
      """分面值"""
      value: Union[str, int, float] = Field(..., description="分面值")
      label: Optional[str] = Field(None, description="显示标签(如果与 value 不同)")
      count: int = Field(..., description="匹配的文档数量")
      selected: bool = Field(False, description="是否已选中(当前过滤器中)")
  
  
  class FacetResult(BaseModel):
      """分面结果(标准化格式)"""
      field: str = Field(..., description="字段名")
      label: str = Field(..., description="分面显示名称")
      type: Literal["terms", "range"] = Field(..., description="分面类型")
      values: List[FacetValue] = Field(..., description="分面值列表")
      total_count: Optional[int] = Field(None, description="该字段的总文档数")
be52af70   tangwang   first commit
177
178
  
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
179
180
181
  class SkuResult(BaseModel):
      """SKU 结果"""
      sku_id: str = Field(..., description="SKU ID")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
182
      # 与 ES nested skus 结构对齐
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
183
184
      price: Optional[float] = Field(None, description="价格")
      compare_at_price: Optional[float] = Field(None, description="原价")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
185
      sku_code: Optional[str] = Field(None, description="SKU编码")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
186
      stock: int = Field(0, description="库存数量")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
187
188
189
190
191
192
      weight: Optional[float] = Field(None, description="重量")
      weight_unit: Optional[str] = Field(None, description="重量单位")
      option1_value: Optional[str] = Field(None, description="选项1取值(如颜色)")
      option2_value: Optional[str] = Field(None, description="选项2取值(如尺码)")
      option3_value: Optional[str] = Field(None, description="选项3取值")
      image_src: Optional[str] = Field(None, description="SKU图片地址")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
193
194
  
  
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
195
196
197
  class SpuResult(BaseModel):
      """SPU 搜索结果"""
      spu_id: str = Field(..., description="SPU ID")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
198
      title: Optional[str] = Field(None, description="商品标题")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
199
      brief: Optional[str] = Field(None, description="商品短描述")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
200
201
202
      handle: Optional[str] = Field(None, description="商品handle")
      description: Optional[str] = Field(None, description="商品描述")
      vendor: Optional[str] = Field(None, description="供应商/品牌")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
203
204
205
206
207
208
209
210
      category: Optional[str] = Field(None, description="类目(兼容字段,等同于category_name)")
      category_path: Optional[str] = Field(None, description="类目路径(多级,用于面包屑)")
      category_name: Optional[str] = Field(None, description="类目名称(展示用)")
      category_id: Optional[str] = Field(None, description="类目ID")
      category_level: Optional[int] = Field(None, description="类目层级")
      category1_name: Optional[str] = Field(None, description="一级类目名称")
      category2_name: Optional[str] = Field(None, description="二级类目名称")
      category3_name: Optional[str] = Field(None, description="三级类目名称")
bf89b597   tangwang   feat(search): ada...
211
      tags: Optional[List[str]] = Field(None, description="标签列表")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
212
213
214
215
216
      price: Optional[float] = Field(None, description="价格(min_price)")
      compare_at_price: Optional[float] = Field(None, description="原价")
      currency: str = Field("USD", description="货币单位")
      image_url: Optional[str] = Field(None, description="主图URL")
      in_stock: bool = Field(True, description="是否有库存")
577ec972   tangwang   返回给前端的字段、格式适配。主要包...
217
218
219
220
221
222
223
224
225
226
227
228
      # SKU 扁平化信息
      sku_prices: Optional[List[float]] = Field(None, description="所有SKU价格列表")
      sku_weights: Optional[List[int]] = Field(None, description="所有SKU重量列表")
      sku_weight_units: Optional[List[str]] = Field(None, description="所有SKU重量单位列表")
      total_inventory: Optional[int] = Field(None, description="总库存")
      option1_name: Optional[str] = Field(None, description="选项1名称(如颜色)")
      option2_name: Optional[str] = Field(None, description="选项2名称(如尺码)")
      option3_name: Optional[str] = Field(None, description="选项3名称")
      specifications: Optional[List[Dict[str, Any]]] = Field(
          None,
          description="规格列表(与 ES specifications 字段对应)"
      )
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
229
      skus: List[SkuResult] = Field(default_factory=list, description="SKU列表")
f0577ce4   tangwang   fix last up
230
      relevance_score: float = Field(..., ge=0.0, description="相关性分数(ES原始分数)")
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
231
232
  
  
be52af70   tangwang   first commit
233
  class SearchResponse(BaseModel):
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
234
      """搜索响应模型(外部友好格式)"""
6aa246be   tangwang   问题:Pydantic 应该能自动...
235
236
      
      # 核心结果
cadc77b6   tangwang   索引字段名、变量名、API数据结构...
237
      results: List[SpuResult] = Field(..., description="搜索结果列表")
6aa246be   tangwang   问题:Pydantic 应该能自动...
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
      total: int = Field(..., description="匹配的总文档数")
      max_score: float = Field(..., description="最高相关性分数")
      
      # 分面搜索结果(标准化格式)
      facets: Optional[List[FacetResult]] = Field(
          None,
          description="分面统计结果(标准化格式)"
      )
      
      # 查询信息
      query_info: Dict[str, Any] = Field(
          default_factory=dict,
          description="查询处理信息(原始查询、改写、语言检测、翻译等)"
      )
      
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
253
254
255
      # 推荐与建议
      suggestions: List[str] = Field(default_factory=list, description="搜索建议")
      related_searches: List[str] = Field(default_factory=list, description="相关搜索")
6aa246be   tangwang   问题:Pydantic 应该能自动...
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      
      # 性能指标
      took_ms: int = Field(..., description="搜索总耗时(毫秒)")
      performance_info: Optional[Dict[str, Any]] = Field(None, description="详细性能信息")
      
      # 调试信息
      debug_info: Optional[Dict[str, Any]] = Field(None, description="调试信息(仅当 debug=True)")
  
  
  class SearchSuggestResponse(BaseModel):
      """搜索建议响应模型(框架,暂不实现)"""
      query: str = Field(..., description="原始查询")
      suggestions: List[Dict[str, Any]] = Field(..., description="建议列表")
      took_ms: int = Field(..., description="耗时(毫秒)")
be52af70   tangwang   first commit
270
271
272
273
274
275
276
277
278
279
280
281
  
  
  class DocumentResponse(BaseModel):
      """Single document response model."""
      id: str = Field(..., description="Document ID")
      source: Dict[str, Any] = Field(..., description="Document source")
  
  
  class HealthResponse(BaseModel):
      """Health check response model."""
      status: str = Field(..., description="Service status")
      elasticsearch: str = Field(..., description="Elasticsearch status")
be52af70   tangwang   first commit
282
283
284
285
286
287
  
  
  class ErrorResponse(BaseModel):
      """Error response model."""
      error: str = Field(..., description="Error message")
      detail: Optional[str] = Field(None, description="Detailed error information")