Blame view

config/field_types.py 8.43 KB
be52af70   tangwang   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
  """
  Field type definitions for the search engine configuration system.
  
  This module defines all supported field types, analyzers, and their
  corresponding Elasticsearch mapping configurations.
  """
  
  from enum import Enum
  from typing import Dict, Any, Optional
  from dataclasses import dataclass
  
  
  class FieldType(Enum):
      """Supported field types in the search engine."""
      TEXT = "text"
      KEYWORD = "keyword"
      TEXT_EMBEDDING = "text_embedding"
      IMAGE_EMBEDDING = "image_embedding"
      INT = "int"
      LONG = "long"
      FLOAT = "float"
      DOUBLE = "double"
      DATE = "date"
      BOOLEAN = "boolean"
      JSON = "json"
  
  
  class AnalyzerType(Enum):
      """Supported analyzer types for text fields."""
      # E-commerce general analysis - Chinese
      CHINESE_ECOMMERCE = "index_ansj"
      CHINESE_ECOMMERCE_QUERY = "query_ansj"
  
      # Standard language analyzers
      ENGLISH = "english"
      ARABIC = "arabic"
      SPANISH = "spanish"
      RUSSIAN = "russian"
      JAPANESE = "japanese"
  
      # Standard analyzers
      STANDARD = "standard"
      KEYWORD = "keyword"
  
  
  class SimilarityType(Enum):
      """Supported similarity algorithms for text fields."""
      BM25 = "BM25"
      BM25_CUSTOM = "BM25_custom"  # Modified BM25 with b=0.0, k1=0.0
  
  
  @dataclass
  class FieldConfig:
      """Configuration for a single field."""
      name: str
      field_type: FieldType
be52af70   tangwang   first commit
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
      analyzer: Optional[AnalyzerType] = None
      search_analyzer: Optional[AnalyzerType] = None
      required: bool = False
      multi_language: bool = False  # If true, field has language variants
      languages: Optional[list] = None  # ['zh', 'en', 'ru']
      boost: float = 1.0
      store: bool = False
      index: bool = True
  
      # For embedding fields
      embedding_dims: int = 1024
      embedding_similarity: str = "dot_product"  # dot_product, cosine, l2_norm
  
      # For nested fields (like image embeddings)
      nested: bool = False
      nested_properties: Optional[Dict[str, Any]] = None
  
  
  def get_es_mapping_for_field(field_config: FieldConfig) -> Dict[str, Any]:
      """
      Generate Elasticsearch mapping configuration for a field.
  
      Args:
          field_config: Field configuration object
  
      Returns:
          Dictionary containing ES mapping for the field
      """
      mapping = {}
  
      if field_config.field_type == FieldType.TEXT:
          mapping = {
              "type": "text",
              "store": field_config.store,
              "index": field_config.index
          }
  
          if field_config.analyzer:
              if field_config.analyzer == AnalyzerType.CHINESE_ECOMMERCE:
                  mapping["analyzer"] = "index_ansj"
                  mapping["search_analyzer"] = "query_ansj"
              else:
                  mapping["analyzer"] = field_config.analyzer.value
  
          if field_config.search_analyzer:
              mapping["search_analyzer"] = field_config.search_analyzer.value
  
      elif field_config.field_type == FieldType.KEYWORD:
          mapping = {
              "type": "keyword",
              "store": field_config.store,
              "index": field_config.index
          }
  
      elif field_config.field_type == FieldType.TEXT_EMBEDDING:
          mapping = {
              "type": "dense_vector",
              "dims": field_config.embedding_dims,
              "index": True,
              "similarity": field_config.embedding_similarity
          }
  
      elif field_config.field_type == FieldType.IMAGE_EMBEDDING:
          if field_config.nested:
              mapping = {
                  "type": "nested",
                  "properties": {
                      "vector": {
                          "type": "dense_vector",
                          "dims": field_config.embedding_dims,
                          "index": True,
                          "similarity": field_config.embedding_similarity
                      },
                      "url": {
                          "type": "keyword"
                      }
                  }
              }
          else:
              # Simple vector field
              mapping = {
                  "type": "dense_vector",
                  "dims": field_config.embedding_dims,
                  "index": True,
                  "similarity": field_config.embedding_similarity
              }
  
      elif field_config.field_type in [FieldType.INT, FieldType.LONG]:
          mapping = {
              "type": "long",
              "store": field_config.store,
              "index": field_config.index
          }
  
      elif field_config.field_type in [FieldType.FLOAT, FieldType.DOUBLE]:
          mapping = {
              "type": "float",
              "store": field_config.store,
              "index": field_config.index
          }
  
      elif field_config.field_type == FieldType.DATE:
          mapping = {
              "type": "date",
              "store": field_config.store,
              "index": field_config.index
          }
  
      elif field_config.field_type == FieldType.BOOLEAN:
          mapping = {
              "type": "boolean",
              "store": field_config.store,
              "index": field_config.index
          }
  
      elif field_config.field_type == FieldType.JSON:
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
          if field_config.nested and field_config.nested_properties:
              # Nested type with properties (e.g., variants)
              mapping = {
                  "type": "nested",
                  "properties": {}
              }
              # Generate mappings for nested properties
              for prop_name, prop_config in field_config.nested_properties.items():
                  prop_type = prop_config.get("type", "keyword")
                  prop_mapping = {"type": prop_type}
                  
                  # Add analyzer for text fields
                  if prop_type == "text" and "analyzer" in prop_config:
                      prop_mapping["analyzer"] = prop_config["analyzer"]
                  
                  # Add other properties
                  if "index" in prop_config:
                      prop_mapping["index"] = prop_config["index"]
                  if "store" in prop_config:
                      prop_mapping["store"] = prop_config["store"]
                  
                  mapping["properties"][prop_name] = prop_mapping
          else:
              # Simple object type
              mapping = {
                  "type": "object",
                  "enabled": True
              }
be52af70   tangwang   first commit
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  
      return mapping
  
  
  def get_default_analyzers() -> Dict[str, Any]:
      """
      Get default analyzer definitions for the index.
  
      Returns:
          Dictionary of analyzer configurations
      """
      return {
          "analysis": {
              "analyzer": {
                  "index_ansj": {
                      "type": "custom",
                      "tokenizer": "standard",
                      "filter": ["lowercase", "asciifolding"]
                  },
                  "query_ansj": {
                      "type": "custom",
                      "tokenizer": "standard",
                      "filter": ["lowercase", "asciifolding"]
                  }
              }
          }
      }
  
  
  def get_default_similarity() -> Dict[str, Any]:
      """
      Get default similarity configuration (modified BM25).
  
      Returns:
          Dictionary of similarity configurations
      """
      return {
          "similarity": {
              "default": {
                  "type": "BM25",
                  "b": 0.0,
                  "k1": 0.0
              }
          }
      }
  
  
  # Mapping of field type strings to FieldType enum
  FIELD_TYPE_MAP = {
      "text": FieldType.TEXT,
      "TEXT": FieldType.TEXT,
      "keyword": FieldType.KEYWORD,
      "KEYWORD": FieldType.KEYWORD,
      "LITERAL": FieldType.KEYWORD,
      "text_embedding": FieldType.TEXT_EMBEDDING,
      "TEXT_EMBEDDING": FieldType.TEXT_EMBEDDING,
      "EMBEDDING": FieldType.TEXT_EMBEDDING,
      "image_embedding": FieldType.IMAGE_EMBEDDING,
      "IMAGE_EMBEDDING": FieldType.IMAGE_EMBEDDING,
      "int": FieldType.INT,
      "INT": FieldType.INT,
      "long": FieldType.LONG,
      "LONG": FieldType.LONG,
      "float": FieldType.FLOAT,
      "FLOAT": FieldType.FLOAT,
      "double": FieldType.DOUBLE,
      "DOUBLE": FieldType.DOUBLE,
      "date": FieldType.DATE,
      "DATE": FieldType.DATE,
      "boolean": FieldType.BOOLEAN,
      "BOOLEAN": FieldType.BOOLEAN,
      "json": FieldType.JSON,
      "JSON": FieldType.JSON,
  }
  
  
  # Mapping of analyzer strings to AnalyzerType enum
  ANALYZER_MAP = {
      "chinese": AnalyzerType.CHINESE_ECOMMERCE,
      "chinese_ecommerce": AnalyzerType.CHINESE_ECOMMERCE,
      "index_ansj": AnalyzerType.CHINESE_ECOMMERCE,
      "english": AnalyzerType.ENGLISH,
      "arabic": AnalyzerType.ARABIC,
      "spanish": AnalyzerType.SPANISH,
      "russian": AnalyzerType.RUSSIAN,
      "japanese": AnalyzerType.JAPANESE,
      "standard": AnalyzerType.STANDARD,
      "keyword": AnalyzerType.KEYWORD,
  }