Blame view

indexer/spu_transformer.py 8.9 KB
1f6d15fa   tangwang   重构:SPU级别索引、统一索引架构...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  """
  SPU data transformer for Shoplazza products.
  
  Transforms SPU and SKU data from MySQL into SPU-level ES documents with nested variants.
  """
  
  import pandas as pd
  import numpy as np
  from typing import Dict, Any, List, Optional
  from sqlalchemy import create_engine, text
  from utils.db_connector import create_db_connection
  
  
  class SPUTransformer:
      """Transform SPU and SKU data into SPU-level ES documents."""
  
      def __init__(
          self,
          db_engine: Any,
          tenant_id: str
      ):
          """
          Initialize SPU transformer.
  
          Args:
              db_engine: SQLAlchemy database engine
              tenant_id: Tenant ID for filtering data
          """
          self.db_engine = db_engine
          self.tenant_id = tenant_id
  
      def load_spu_data(self) -> pd.DataFrame:
          """
          Load SPU data from MySQL.
  
          Returns:
              DataFrame with SPU data
          """
          query = text("""
              SELECT 
                  id, shop_id, shoplazza_id, handle, title, brief, description,
                  spu, vendor, vendor_url, seo_title, seo_description, seo_keywords,
                  image_src, image_width, image_height, image_path, image_alt,
                  tags, note, category,
                  shoplazza_created_at, shoplazza_updated_at, tenant_id,
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_spu
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
          return df
  
      def load_sku_data(self) -> pd.DataFrame:
          """
          Load SKU data from MySQL.
  
          Returns:
              DataFrame with SKU data
          """
          query = text("""
              SELECT 
                  id, spu_id, shop_id, shoplazza_id, shoplazza_product_id,
                  shoplazza_image_id, title, sku, barcode, position,
                  price, compare_at_price, cost_price,
                  option1, option2, option3,
                  inventory_quantity, weight, weight_unit, image_src,
                  wholesale_price, note, extend,
                  shoplazza_created_at, shoplazza_updated_at, tenant_id,
                  creator, create_time, updater, update_time, deleted
              FROM shoplazza_product_sku
              WHERE tenant_id = :tenant_id AND deleted = 0
          """)
          
          with self.db_engine.connect() as conn:
              df = pd.read_sql(query, conn, params={"tenant_id": self.tenant_id})
          
          return df
  
      def transform_batch(self) -> List[Dict[str, Any]]:
          """
          Transform SPU and SKU data into ES documents.
  
          Returns:
              List of SPU-level ES documents
          """
          # Load data
          spu_df = self.load_spu_data()
          sku_df = self.load_sku_data()
  
          if spu_df.empty:
              return []
  
          # Group SKUs by SPU
          sku_groups = sku_df.groupby('spu_id')
  
          documents = []
          for _, spu_row in spu_df.iterrows():
              spu_id = spu_row['id']
              
              # Get SKUs for this SPU
              skus = sku_groups.get_group(spu_id) if spu_id in sku_groups.groups else pd.DataFrame()
              
              # Transform to ES document
              doc = self._transform_spu_to_doc(spu_row, skus)
              if doc:
                  documents.append(doc)
  
          return documents
  
      def _transform_spu_to_doc(
          self,
          spu_row: pd.Series,
          skus: pd.DataFrame
      ) -> Optional[Dict[str, Any]]:
          """
          Transform a single SPU row and its SKUs into an ES document.
  
          Args:
              spu_row: SPU row from database
              skus: DataFrame with SKUs for this SPU
  
          Returns:
              ES document or None if transformation fails
          """
          doc = {}
  
          # Tenant ID (required)
          doc['tenant_id'] = str(self.tenant_id)
  
          # Product ID
          doc['product_id'] = str(spu_row['id'])
  
          # Handle
          if pd.notna(spu_row.get('handle')):
              doc['handle'] = str(spu_row['handle'])
  
          # Title
          if pd.notna(spu_row.get('title')):
              doc['title'] = str(spu_row['title'])
  
          # Brief
          if pd.notna(spu_row.get('brief')):
              doc['brief'] = str(spu_row['brief'])
  
          # Description
          if pd.notna(spu_row.get('description')):
              doc['description'] = str(spu_row['description'])
  
          # SEO fields
          if pd.notna(spu_row.get('seo_title')):
              doc['seo_title'] = str(spu_row['seo_title'])
          if pd.notna(spu_row.get('seo_description')):
              doc['seo_description'] = str(spu_row['seo_description'])
          if pd.notna(spu_row.get('seo_keywords')):
              doc['seo_keywords'] = str(spu_row['seo_keywords'])
  
          # Vendor
          if pd.notna(spu_row.get('vendor')):
              doc['vendor'] = str(spu_row['vendor'])
              doc['vendor_keyword'] = str(spu_row['vendor'])
  
          # Product type (from category or tags)
          if pd.notna(spu_row.get('category')):
              doc['product_type'] = str(spu_row['category'])
              doc['product_type_keyword'] = str(spu_row['category'])
  
          # Tags
          if pd.notna(spu_row.get('tags')):
              tags_str = str(spu_row['tags'])
              doc['tags'] = tags_str
              doc['tags_keyword'] = tags_str
  
          # Category
          if pd.notna(spu_row.get('category')):
              doc['category'] = str(spu_row['category'])
              doc['category_keyword'] = str(spu_row['category'])
  
          # Image URL
          if pd.notna(spu_row.get('image_src')):
              image_src = str(spu_row['image_src'])
              if not image_src.startswith('http'):
                  image_src = f"//{image_src}" if image_src.startswith('//') else image_src
              doc['image_url'] = image_src
  
          # Process variants
          variants = []
          prices = []
          compare_prices = []
  
          for _, sku_row in skus.iterrows():
              variant = self._transform_sku_to_variant(sku_row)
              if variant:
                  variants.append(variant)
                  if 'price' in variant and variant['price'] is not None:
                      try:
                          prices.append(float(variant['price']))
                      except (ValueError, TypeError):
                          pass
                  if 'compare_at_price' in variant and variant['compare_at_price'] is not None:
                      try:
                          compare_prices.append(float(variant['compare_at_price']))
                      except (ValueError, TypeError):
                          pass
  
          doc['variants'] = variants
  
          # Calculate price ranges
          if prices:
              doc['min_price'] = float(min(prices))
              doc['max_price'] = float(max(prices))
          else:
              doc['min_price'] = 0.0
              doc['max_price'] = 0.0
  
          if compare_prices:
              doc['compare_at_price'] = float(max(compare_prices))
          else:
              doc['compare_at_price'] = None
  
          return doc
  
      def _transform_sku_to_variant(self, sku_row: pd.Series) -> Optional[Dict[str, Any]]:
          """
          Transform a SKU row into a variant object.
  
          Args:
              sku_row: SKU row from database
  
          Returns:
              Variant dictionary or None
          """
          variant = {}
  
          # Variant ID
          variant['variant_id'] = str(sku_row['id'])
  
          # Title
          if pd.notna(sku_row.get('title')):
              variant['title'] = str(sku_row['title'])
  
          # Price
          if pd.notna(sku_row.get('price')):
              try:
                  variant['price'] = float(sku_row['price'])
              except (ValueError, TypeError):
                  variant['price'] = None
          else:
              variant['price'] = None
  
          # Compare at price
          if pd.notna(sku_row.get('compare_at_price')):
              try:
                  variant['compare_at_price'] = float(sku_row['compare_at_price'])
              except (ValueError, TypeError):
                  variant['compare_at_price'] = None
          else:
              variant['compare_at_price'] = None
  
          # SKU
          if pd.notna(sku_row.get('sku')):
              variant['sku'] = str(sku_row['sku'])
  
          # Stock
          if pd.notna(sku_row.get('inventory_quantity')):
              try:
                  variant['stock'] = int(sku_row['inventory_quantity'])
              except (ValueError, TypeError):
                  variant['stock'] = 0
          else:
              variant['stock'] = 0
  
          # Options (from option1, option2, option3)
          options = {}
          if pd.notna(sku_row.get('option1')):
              options['option1'] = str(sku_row['option1'])
          if pd.notna(sku_row.get('option2')):
              options['option2'] = str(sku_row['option2'])
          if pd.notna(sku_row.get('option3')):
              options['option3'] = str(sku_row['option3'])
          
          if options:
              variant['options'] = options
  
          return variant