be52af70
tangwang
first commit
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#!/usr/bin/env python3
"""
Customer1 data ingestion script.
Loads data from CSV and indexes into Elasticsearch with embeddings.
"""
import sys
import os
import pandas as pd
import argparse
# Add parent directory to path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import ConfigLoader
from utils import ESClient, get_connection_from_config
from indexer import DataTransformer, IndexingPipeline
from embeddings import BgeEncoder, CLIPImageEncoder
def load_csv_data(csv_path: str, limit: Optional[int] = None) -> pd.DataFrame:
"""
Load data from CSV file.
Args:
csv_path: Path to CSV file
limit: Maximum number of rows to load (None for all)
Returns:
DataFrame with data
"""
print(f"[Ingestion] Loading data from: {csv_path}")
df = pd.read_csv(csv_path)
if limit:
df = df.head(limit)
print(f"[Ingestion] Loaded {len(df)} rows")
print(f"[Ingestion] Columns: {df.columns.tolist()}")
return df
def main():
"""Main ingestion function."""
parser = argparse.ArgumentParser(description='Ingest customer1 data into Elasticsearch')
parser.add_argument('--config', default='customer1', help='Customer config name')
parser.add_argument('--csv', default='data/customer1/goods_with_pic.5years_congku.csv.shuf.1w',
help='Path to CSV data file')
parser.add_argument('--limit', type=int, help='Limit number of documents to index')
parser.add_argument('--batch-size', type=int, default=100, help='Batch size for processing')
parser.add_argument('--recreate-index', action='store_true', help='Recreate index if exists')
parser.add_argument('--es-host', default='http://localhost:9200', help='Elasticsearch host')
parser.add_argument('--skip-embeddings', action='store_true', help='Skip embedding generation')
args = parser.parse_args()
print("="*60)
print("Customer1 Data Ingestion")
print("="*60)
# Load configuration
print(f"\n[1/6] Loading configuration: {args.config}")
config_loader = ConfigLoader("config/schema")
config = config_loader.load_customer_config(args.config)
# Validate configuration
errors = config_loader.validate_config(config)
if errors:
print(f"Configuration validation failed:")
for error in errors:
print(f" - {error}")
return 1
print(f"Configuration loaded successfully")
print(f" - Index: {config.es_index_name}")
print(f" - Fields: {len(config.fields)}")
print(f" - Indexes: {len(config.indexes)}")
# Initialize Elasticsearch client
print(f"\n[2/6] Connecting to Elasticsearch: {args.es_host}")
os.environ['ES_HOST'] = args.es_host
es_client = ESClient(hosts=[args.es_host])
if not es_client.ping():
print("Failed to connect to Elasticsearch")
return 1
print("Connected to Elasticsearch successfully")
# Load data
print(f"\n[3/6] Loading data from CSV")
df = load_csv_data(args.csv, limit=args.limit)
# Initialize encoders (if not skipping embeddings)
text_encoder = None
image_encoder = None
if not args.skip_embeddings:
print(f"\n[4/6] Initializing embedding encoders")
print("This may take a few minutes on first run (downloading models)...")
try:
text_encoder = BgeEncoder()
print("Text encoder initialized")
except Exception as e:
print(f"Warning: Failed to initialize text encoder: {e}")
print("Continuing without text embeddings...")
try:
image_encoder = CLIPImageEncoder()
print("Image encoder initialized")
except Exception as e:
print(f"Warning: Failed to initialize image encoder: {e}")
print("Continuing without image embeddings...")
else:
print(f"\n[4/6] Skipping embedding generation (--skip-embeddings)")
# Initialize data transformer
print(f"\n[5/6] Initializing data transformation pipeline")
transformer = DataTransformer(
config=config,
text_encoder=text_encoder,
image_encoder=image_encoder,
use_cache=True
)
# Run indexing pipeline
print(f"\n[6/6] Starting indexing pipeline")
pipeline = IndexingPipeline(
config=config,
es_client=es_client,
data_transformer=transformer,
recreate_index=args.recreate_index
)
results = pipeline.run(df, batch_size=args.batch_size)
# Print summary
print("\n" + "="*60)
print("Ingestion Complete!")
print("="*60)
print(f"Total documents: {results['total']}")
print(f"Successfully indexed: {results['success']}")
print(f"Failed: {results['failed']}")
print(f"Time elapsed: {results['elapsed_time']:.2f}s")
print(f"Throughput: {results['docs_per_second']:.2f} docs/s")
if results['errors']:
print(f"\nFirst few errors:")
for error in results['errors'][:5]:
print(f" - {error}")
# Verify index
print(f"\nVerifying index...")
doc_count = es_client.count(config.es_index_name)
print(f"Documents in index: {doc_count}")
print("\nIngestion completed successfully!")
return 0
if __name__ == "__main__":
sys.exit(main())
|