b926f678
tangwang
多语言查询
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
"""
Multi-language query builder for handling domain-specific searches.
This module extends the ESQueryBuilder to support multi-language field mappings,
allowing queries to be routed to appropriate language-specific fields while
maintaining a unified external interface.
"""
from typing import Dict, Any, List, Optional
import numpy as np
from config import CustomerConfig, IndexConfig
from query import ParsedQuery
from .es_query_builder import ESQueryBuilder
class MultiLanguageQueryBuilder(ESQueryBuilder):
"""
Enhanced query builder with multi-language support.
Handles routing queries to appropriate language-specific fields based on:
1. Detected query language
2. Available translations
3. Domain configuration (language_field_mapping)
"""
def __init__(
self,
config: CustomerConfig,
index_name: str,
text_embedding_field: Optional[str] = None,
|
13377199
tangwang
接口优化
|
32
33
|
image_embedding_field: Optional[str] = None,
source_fields: Optional[List[str]] = None
|
b926f678
tangwang
多语言查询
|
34
35
36
37
38
39
40
41
42
|
):
"""
Initialize multi-language query builder.
Args:
config: Customer configuration
index_name: ES index name
text_embedding_field: Field name for text embeddings
image_embedding_field: Field name for image embeddings
|
13377199
tangwang
接口优化
|
43
|
source_fields: Fields to return in search results (_source includes)
|
b926f678
tangwang
多语言查询
|
44
45
|
"""
self.config = config
|
a00c3672
tangwang
feat: Function Sc...
|
46
|
self.function_score_config = config.function_score
|
b926f678
tangwang
多语言查询
|
47
48
49
50
51
52
53
54
|
# For default domain, use all fields as fallback
default_fields = self._get_domain_fields("default")
super().__init__(
index_name=index_name,
match_fields=default_fields,
text_embedding_field=text_embedding_field,
|
13377199
tangwang
接口优化
|
55
56
|
image_embedding_field=image_embedding_field,
source_fields=source_fields
|
b926f678
tangwang
多语言查询
|
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
)
# Build domain configurations
self.domain_configs = self._build_domain_configs()
def _build_domain_configs(self) -> Dict[str, IndexConfig]:
"""Build mapping of domain name to IndexConfig."""
return {index.name: index for index in self.config.indexes}
def _get_domain_fields(self, domain_name: str) -> List[str]:
"""Get fields for a specific domain with boost notation."""
for index in self.config.indexes:
if index.name == domain_name:
result = []
for field_name in index.fields:
field = self._get_field_by_name(field_name)
if field and field.boost != 1.0:
result.append(f"{field_name}^{field.boost}")
else:
result.append(field_name)
return result
return []
def _get_field_by_name(self, field_name: str):
"""Get field configuration by name."""
for field in self.config.fields:
if field.name == field_name:
return field
return None
def build_multilang_query(
self,
parsed_query: ParsedQuery,
query_vector: Optional[np.ndarray] = None,
|
f739c5e3
tangwang
fix sch
|
91
|
query_node: Optional[Any] = None,
|
b926f678
tangwang
多语言查询
|
92
|
filters: Optional[Dict[str, Any]] = None,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
93
|
range_filters: Optional[Dict[str, Any]] = None,
|
b926f678
tangwang
多语言查询
|
94
95
96
97
98
99
100
101
|
size: int = 10,
from_: int = 0,
enable_knn: bool = True,
knn_k: int = 50,
knn_num_candidates: int = 200,
min_score: Optional[float] = None
) -> Dict[str, Any]:
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
102
|
Build ES query with multi-language support (重构版).
|
b926f678
tangwang
多语言查询
|
103
104
105
106
|
Args:
parsed_query: Parsed query with language info and translations
query_vector: Query embedding for KNN search
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
107
108
|
filters: Exact match filters
range_filters: Range filters for numeric fields
|
b926f678
tangwang
多语言查询
|
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
size: Number of results
from_: Offset for pagination
enable_knn: Whether to use KNN search
knn_k: K value for KNN
knn_num_candidates: Number of candidates for KNN
min_score: Minimum score threshold
Returns:
ES query DSL dictionary
"""
domain = parsed_query.domain
domain_config = self.domain_configs.get(domain)
if not domain_config:
# Fallback to default domain
domain = "default"
domain_config = self.domain_configs.get("default")
if not domain_config:
# Use original behavior
return super().build_query(
query_text=parsed_query.rewritten_query,
query_vector=query_vector,
filters=filters,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
133
|
range_filters=range_filters,
|
b926f678
tangwang
多语言查询
|
134
135
136
137
138
139
140
141
142
143
144
145
146
|
size=size,
from_=from_,
enable_knn=enable_knn,
knn_k=knn_k,
knn_num_candidates=knn_num_candidates,
min_score=min_score
)
print(f"[MultiLangQueryBuilder] Building query for domain: {domain}")
print(f"[MultiLangQueryBuilder] Detected language: {parsed_query.detected_language}")
print(f"[MultiLangQueryBuilder] Available translations: {list(parsed_query.translations.keys())}")
# Build query clause with multi-language support
|
f739c5e3
tangwang
fix sch
|
147
148
149
150
151
152
153
154
155
156
157
158
|
if query_node and isinstance(query_node, tuple) and len(query_node) > 0:
# Handle boolean query from tuple (AST, score)
ast_node = query_node[0]
query_clause = self._build_boolean_query_from_tuple(ast_node)
print(f"[MultiLangQueryBuilder] Using boolean query: {query_clause}")
elif query_node and hasattr(query_node, 'operator') and query_node.operator != 'TERM':
# Handle boolean query using base class method
query_clause = self._build_boolean_query(query_node)
print(f"[MultiLangQueryBuilder] Using boolean query: {query_clause}")
else:
# Handle text query with multi-language support
query_clause = self._build_multilang_text_query(parsed_query, domain_config)
|
b926f678
tangwang
多语言查询
|
159
|
|
43f1139f
tangwang
refactor: ES查询结构重...
|
160
161
|
# 构建内层bool: 文本和KNN二选一
inner_bool_should = [query_clause]
|
b926f678
tangwang
多语言查询
|
162
|
|
43f1139f
tangwang
refactor: ES查询结构重...
|
163
164
165
166
167
168
169
170
|
# 如果启用KNN,添加到should
if enable_knn and query_vector is not None and self.text_embedding_field:
knn_query = {
"knn": {
"field": self.text_embedding_field,
"query_vector": query_vector.tolist(),
"k": knn_k,
"num_candidates": knn_num_candidates
|
b926f678
tangwang
多语言查询
|
171
|
}
|
43f1139f
tangwang
refactor: ES查询结构重...
|
172
173
|
}
inner_bool_should.append(knn_query)
|
b926f678
tangwang
多语言查询
|
174
|
|
43f1139f
tangwang
refactor: ES查询结构重...
|
175
176
177
178
179
|
# 构建内层bool结构
inner_bool = {
"bool": {
"should": inner_bool_should,
"minimum_should_match": 1
|
b926f678
tangwang
多语言查询
|
180
|
}
|
43f1139f
tangwang
refactor: ES查询结构重...
|
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
}
# 构建外层bool: 包含filter
filter_clauses = self._build_filters(filters, range_filters) if (filters or range_filters) else []
outer_bool = {
"bool": {
"must": [inner_bool]
}
}
if filter_clauses:
outer_bool["bool"]["filter"] = filter_clauses
|
a00c3672
tangwang
feat: Function Sc...
|
195
|
# 包裹function_score(从配置读取score_mode和boost_mode)
|
43f1139f
tangwang
refactor: ES查询结构重...
|
196
197
198
199
|
function_score_query = {
"function_score": {
"query": outer_bool,
"functions": self._build_score_functions(),
|
a00c3672
tangwang
feat: Function Sc...
|
200
201
|
"score_mode": self.function_score_config.score_mode if self.function_score_config else "sum",
"boost_mode": self.function_score_config.boost_mode if self.function_score_config else "multiply"
|
43f1139f
tangwang
refactor: ES查询结构重...
|
202
203
204
205
206
207
208
209
|
}
}
es_query = {
"size": size,
"from": from_,
"query": function_score_query
}
|
b926f678
tangwang
多语言查询
|
210
|
|
13377199
tangwang
接口优化
|
211
212
213
214
215
216
|
# Add _source filtering if source_fields are configured
if self.source_fields:
es_query["_source"] = {
"includes": self.source_fields
}
|
b926f678
tangwang
多语言查询
|
217
218
219
220
221
|
if min_score is not None:
es_query["min_score"] = min_score
return es_query
|
43f1139f
tangwang
refactor: ES查询结构重...
|
222
223
|
def _build_score_functions(self) -> List[Dict[str, Any]]:
"""
|
a00c3672
tangwang
feat: Function Sc...
|
224
|
从配置构建 function_score 的打分函数列表
|
43f1139f
tangwang
refactor: ES查询结构重...
|
225
226
|
Returns:
|
a00c3672
tangwang
feat: Function Sc...
|
227
|
打分函数列表(ES原生格式)
|
43f1139f
tangwang
refactor: ES查询结构重...
|
228
|
"""
|
a00c3672
tangwang
feat: Function Sc...
|
229
230
231
|
if not self.function_score_config or not self.function_score_config.functions:
return []
|
43f1139f
tangwang
refactor: ES查询结构重...
|
232
233
|
functions = []
|
a00c3672
tangwang
feat: Function Sc...
|
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
for func_config in self.function_score_config.functions:
func_type = func_config.get('type')
if func_type == 'filter_weight':
# Filter + Weight
functions.append({
"filter": func_config['filter'],
"weight": func_config.get('weight', 1.0)
})
elif func_type == 'field_value_factor':
# Field Value Factor
functions.append({
"field_value_factor": {
"field": func_config['field'],
"factor": func_config.get('factor', 1.0),
"modifier": func_config.get('modifier', 'none'),
"missing": func_config.get('missing', 1.0)
}
})
elif func_type == 'decay':
# Decay Function (gauss/exp/linear)
decay_func = func_config.get('function', 'gauss')
field = func_config['field']
decay_params = {
"origin": func_config.get('origin', 'now'),
"scale": func_config['scale']
|
43f1139f
tangwang
refactor: ES查询结构重...
|
263
|
}
|
a00c3672
tangwang
feat: Function Sc...
|
264
265
266
267
268
269
270
271
272
273
274
|
if 'offset' in func_config:
decay_params['offset'] = func_config['offset']
if 'decay' in func_config:
decay_params['decay'] = func_config['decay']
functions.append({
decay_func: {
field: decay_params
}
})
|
43f1139f
tangwang
refactor: ES查询结构重...
|
275
276
277
|
return functions
|
b926f678
tangwang
多语言查询
|
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
def _build_multilang_text_query(
self,
parsed_query: ParsedQuery,
domain_config: IndexConfig
) -> Dict[str, Any]:
"""
Build text query with multi-language field routing.
Args:
parsed_query: Parsed query with language info
domain_config: Domain configuration
Returns:
ES query clause
"""
if not domain_config.language_field_mapping:
# No multi-language mapping, use all fields with default analyzer
fields_with_boost = []
for field_name in domain_config.fields:
field = self._get_field_by_name(field_name)
if field and field.boost != 1.0:
fields_with_boost.append(f"{field_name}^{field.boost}")
else:
fields_with_boost.append(field_name)
return {
"multi_match": {
"query": parsed_query.rewritten_query,
"fields": fields_with_boost,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": domain_config.boost,
"_name": f"{domain_config.name}_query"
}
}
# Multi-language mapping exists - build targeted queries
should_clauses = []
available_languages = set(domain_config.language_field_mapping.keys())
# 1. Query in detected language (if it exists in mapping)
detected_lang = parsed_query.detected_language
if detected_lang in available_languages:
target_fields = domain_config.language_field_mapping[detected_lang]
fields_with_boost = self._apply_field_boosts(target_fields)
should_clauses.append({
"multi_match": {
"query": parsed_query.rewritten_query,
"fields": fields_with_boost,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": domain_config.boost * 1.5, # Higher boost for detected language
"_name": f"{domain_config.name}_{detected_lang}_query"
}
})
print(f"[MultiLangQueryBuilder] Added query for detected language '{detected_lang}' on fields: {target_fields}")
# 2. Query in translated languages (only for languages in mapping)
for lang, translation in parsed_query.translations.items():
# Only use translations for languages that exist in the mapping
if lang in available_languages and translation and translation.strip():
target_fields = domain_config.language_field_mapping[lang]
fields_with_boost = self._apply_field_boosts(target_fields)
should_clauses.append({
"multi_match": {
"query": translation,
"fields": fields_with_boost,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": domain_config.boost,
"_name": f"{domain_config.name}_{lang}_translated_query"
}
})
print(f"[MultiLangQueryBuilder] Added translated query for language '{lang}' on fields: {target_fields}")
# 3. Fallback: query all fields in mapping if no language-specific query was built
if not should_clauses:
print(f"[MultiLangQueryBuilder] No language mapping matched, using all fields from mapping")
# Use all fields from all languages in the mapping
all_mapped_fields = []
for lang_fields in domain_config.language_field_mapping.values():
all_mapped_fields.extend(lang_fields)
# Remove duplicates while preserving order
unique_fields = list(dict.fromkeys(all_mapped_fields))
fields_with_boost = self._apply_field_boosts(unique_fields)
should_clauses.append({
"multi_match": {
"query": parsed_query.rewritten_query,
"fields": fields_with_boost,
"minimum_should_match": "67%",
"tie_breaker": 0.9,
"boost": domain_config.boost * 0.8, # Lower boost for fallback
"_name": f"{domain_config.name}_fallback_query"
}
})
if len(should_clauses) == 1:
return should_clauses[0]
else:
return {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
}
def _apply_field_boosts(self, field_names: List[str]) -> List[str]:
"""Apply boost values to field names."""
result = []
for field_name in field_names:
field = self._get_field_by_name(field_name)
if field and field.boost != 1.0:
result.append(f"{field_name}^{field.boost}")
else:
result.append(field_name)
return result
|
f739c5e3
tangwang
fix sch
|
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
def _build_boolean_query_from_tuple(self, node) -> Dict[str, Any]:
"""
Build query from boolean expression tuple.
Args:
node: Boolean expression tuple (operator, terms...)
Returns:
ES query clause
"""
if not node:
return {"match_all": {}}
# Handle different node types from boolean parser
if hasattr(node, 'operator'):
# QueryNode object
operator = node.operator
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
415
416
417
418
419
|
terms = node.terms if hasattr(node, 'terms') else None
# For TERM nodes, check if there's a value
if operator == 'TERM' and hasattr(node, 'value') and node.value:
terms = node.value
|
f739c5e3
tangwang
fix sch
|
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
elif isinstance(node, tuple) and len(node) > 0:
# Tuple format from boolean parser
if hasattr(node[0], 'operator'):
# Nested tuple with QueryNode
operator = node[0].operator
terms = node[0].terms
elif isinstance(node[0], str):
# Simple tuple like ('TERM', 'field:value')
operator = node[0]
terms = node[1] if len(node) > 1 else ''
else:
# Complex tuple like (OR( TERM(...), TERM(...) ), score)
if hasattr(node[0], '__class__') and hasattr(node[0], '__name__'):
# Constructor call like OR(...)
operator = node[0].__name__
elif str(node[0]).startswith('('):
# String representation of constructor call
import re
match = re.match(r'(\w+)\(', str(node[0]))
if match:
operator = match.group(1)
else:
return {"match_all": {}}
else:
operator = str(node[0])
# Extract terms from nested structure
terms = []
if len(node) > 1 and isinstance(node[1], tuple):
terms = node[1]
else:
return {"match_all": {}}
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
453
|
|
f739c5e3
tangwang
fix sch
|
454
455
456
457
458
459
460
461
462
|
if operator == 'TERM':
# Leaf node - handle field:query format
if isinstance(terms, str) and ':' in terms:
field, value = terms.split(':', 1)
return {
"term": {
field: value
}
}
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
463
464
465
466
467
468
469
470
471
472
|
elif isinstance(terms, str):
# Simple text term - create match query
return {
"multi_match": {
"query": terms,
"fields": self.match_fields,
"type": "best_fields",
"operator": "AND"
}
}
|
f739c5e3
tangwang
fix sch
|
473
|
else:
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
474
475
476
477
|
# Invalid TERM node - return empty match
return {
"match_none": {}
}
|
f739c5e3
tangwang
fix sch
|
478
479
480
481
|
elif operator == 'OR':
# Any term must match
should_clauses = []
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
482
483
484
485
486
487
488
489
490
491
492
493
|
if terms:
for term in terms:
clause = self._build_boolean_query_from_tuple(term)
if clause and clause.get("match_none") is None:
should_clauses.append(clause)
if should_clauses:
return {
"bool": {
"should": should_clauses,
"minimum_should_match": 1
}
|
f739c5e3
tangwang
fix sch
|
494
|
}
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
495
496
|
else:
return {"match_none": {}}
|
f739c5e3
tangwang
fix sch
|
497
498
499
500
|
elif operator == 'AND':
# All terms must match
must_clauses = []
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
501
502
503
504
505
506
507
508
509
510
511
|
if terms:
for term in terms:
clause = self._build_boolean_query_from_tuple(term)
if clause and clause.get("match_none") is None:
must_clauses.append(clause)
if must_clauses:
return {
"bool": {
"must": must_clauses
}
|
f739c5e3
tangwang
fix sch
|
512
|
}
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
513
514
|
else:
return {"match_none": {}}
|
f739c5e3
tangwang
fix sch
|
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
elif operator == 'ANDNOT':
# First term must match, second must not
if len(terms) >= 2:
return {
"bool": {
"must": [self._build_boolean_query_from_tuple(terms[0])],
"must_not": [self._build_boolean_query_from_tuple(terms[1])]
}
}
else:
return self._build_boolean_query_from_tuple(terms[0])
elif operator == 'RANK':
# Like OR but for ranking (all terms contribute to score)
should_clauses = []
for term in terms:
should_clauses.append(self._build_boolean_query_from_tuple(term))
return {
"bool": {
"should": should_clauses
}
}
else:
# Unknown operator
return {"match_all": {}}
|
b926f678
tangwang
多语言查询
|
543
544
545
546
547
548
549
550
551
552
553
554
555
|
def get_domain_summary(self) -> Dict[str, Any]:
"""Get summary of all configured domains."""
summary = {}
for domain_name, domain_config in self.domain_configs.items():
summary[domain_name] = {
"label": domain_config.label,
"fields": domain_config.fields,
"analyzer": domain_config.analyzer.value,
"boost": domain_config.boost,
"has_multilang_mapping": domain_config.language_field_mapping is not None,
"supported_languages": list(domain_config.language_field_mapping.keys()) if domain_config.language_field_mapping else []
}
return summary
|