be52af70
tangwang
first commit
|
1
2
3
4
5
6
|
"""
Main Searcher module - executes search queries against Elasticsearch.
Handles query parsing, boolean expressions, ranking, and result formatting.
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
7
|
from typing import Dict, Any, List, Optional, Union
|
be52af70
tangwang
first commit
|
8
9
10
11
12
13
14
15
|
import time
from config import CustomerConfig
from utils.es_client import ESClient
from query import QueryParser, ParsedQuery
from indexer import MappingGenerator
from .boolean_parser import BooleanParser, QueryNode
from .es_query_builder import ESQueryBuilder
|
b926f678
tangwang
多语言查询
|
16
|
from .multilang_query_builder import MultiLanguageQueryBuilder
|
43f1139f
tangwang
refactor: ES查询结构重...
|
17
|
from .rerank_engine import RerankEngine
|
16c42787
tangwang
feat: implement r...
|
18
|
from context.request_context import RequestContext, RequestContextStage, create_request_context
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
19
|
from api.models import FacetResult, FacetValue
|
be52af70
tangwang
first commit
|
20
21
22
|
class SearchResult:
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
23
|
"""Container for search results (重构版)."""
|
be52af70
tangwang
first commit
|
24
25
26
27
28
29
30
|
def __init__(
self,
hits: List[Dict[str, Any]],
total: int,
max_score: float,
took_ms: int,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
31
|
facets: Optional[List[FacetResult]] = None,
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
32
33
|
query_info: Optional[Dict[str, Any]] = None,
debug_info: Optional[Dict[str, Any]] = None
|
be52af70
tangwang
first commit
|
34
35
36
37
38
|
):
self.hits = hits
self.total = total
self.max_score = max_score
self.took_ms = took_ms
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
39
|
self.facets = facets
|
be52af70
tangwang
first commit
|
40
|
self.query_info = query_info or {}
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
41
|
self.debug_info = debug_info
|
43f1139f
tangwang
refactor: ES查询结构重...
|
42
|
|
be52af70
tangwang
first commit
|
43
44
|
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary representation."""
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
45
|
result = {
|
be52af70
tangwang
first commit
|
46
47
48
49
|
"hits": self.hits,
"total": self.total,
"max_score": self.max_score,
"took_ms": self.took_ms,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
50
|
"facets": [f.model_dump() for f in self.facets] if self.facets else None,
|
be52af70
tangwang
first commit
|
51
52
|
"query_info": self.query_info
}
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
53
54
55
|
if self.debug_info is not None:
result["debug_info"] = self.debug_info
return result
|
be52af70
tangwang
first commit
|
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
class Searcher:
"""
Main search engine class.
Handles:
- Query parsing and translation
- Boolean expression parsing
- ES query building
- Result ranking and formatting
"""
def __init__(
self,
config: CustomerConfig,
es_client: ESClient,
query_parser: Optional[QueryParser] = None
):
"""
Initialize searcher.
Args:
config: Customer configuration
es_client: Elasticsearch client
query_parser: Query parser (created if not provided)
"""
self.config = config
self.es_client = es_client
self.query_parser = query_parser or QueryParser(config)
# Initialize components
self.boolean_parser = BooleanParser()
|
43f1139f
tangwang
refactor: ES查询结构重...
|
89
|
self.rerank_engine = RerankEngine(config.ranking.expression, enabled=False)
|
be52af70
tangwang
first commit
|
90
91
92
93
94
95
96
|
# Get mapping info
mapping_gen = MappingGenerator(config)
self.match_fields = mapping_gen.get_match_fields_for_domain("default")
self.text_embedding_field = mapping_gen.get_text_embedding_field()
self.image_embedding_field = mapping_gen.get_image_embedding_field()
|
b926f678
tangwang
多语言查询
|
97
98
99
|
# Query builder - use multi-language version
self.query_builder = MultiLanguageQueryBuilder(
config=config,
|
be52af70
tangwang
first commit
|
100
|
index_name=config.es_index_name,
|
be52af70
tangwang
first commit
|
101
|
text_embedding_field=self.text_embedding_field,
|
13377199
tangwang
接口优化
|
102
103
|
image_embedding_field=self.image_embedding_field,
source_fields=config.query_config.source_fields
|
be52af70
tangwang
first commit
|
104
105
106
107
108
109
110
111
|
)
def search(
self,
query: str,
size: int = 10,
from_: int = 0,
filters: Optional[Dict[str, Any]] = None,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
112
113
|
range_filters: Optional[Dict[str, Any]] = None,
facets: Optional[List[Any]] = None,
|
16c42787
tangwang
feat: implement r...
|
114
|
min_score: Optional[float] = None,
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
115
|
context: Optional[RequestContext] = None,
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
116
|
sort_by: Optional[str] = None,
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
117
118
|
sort_order: Optional[str] = "desc",
debug: bool = False
|
be52af70
tangwang
first commit
|
119
120
|
) -> SearchResult:
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
121
|
Execute search query (重构版).
|
be52af70
tangwang
first commit
|
122
123
124
125
126
|
Args:
query: Search query string
size: Number of results to return
from_: Offset for pagination
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
127
128
129
|
filters: Exact match filters
range_filters: Range filters for numeric fields
facets: Facet configurations for faceted search
|
be52af70
tangwang
first commit
|
130
|
min_score: Minimum score threshold
|
16c42787
tangwang
feat: implement r...
|
131
|
context: Request context for tracking (created if not provided)
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
132
133
|
sort_by: Field name for sorting
sort_order: Sort order: 'asc' or 'desc'
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
134
|
debug: Enable debug information output
|
be52af70
tangwang
first commit
|
135
136
137
138
|
Returns:
SearchResult object
"""
|
16c42787
tangwang
feat: implement r...
|
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
# Create context if not provided (backward compatibility)
if context is None:
context = create_request_context()
# Always use config defaults (these are backend configuration, not user parameters)
enable_translation = self.config.query_config.enable_translation
enable_embedding = self.config.query_config.enable_text_embedding
enable_rerank = True # Always enable reranking as it's part of the search logic
# Start timing
context.start_stage(RequestContextStage.TOTAL)
context.logger.info(
f"开始搜索请求 | 查询: '{query}' | 参数: size={size}, from_={from_}, "
f"enable_translation={enable_translation}, enable_embedding={enable_embedding}, "
f"enable_rerank={enable_rerank}, min_score={min_score}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
# Store search parameters in context
context.metadata['search_params'] = {
'size': size,
'from_': from_,
'filters': filters,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
163
164
|
'range_filters': range_filters,
'facets': facets,
|
16c42787
tangwang
feat: implement r...
|
165
166
167
|
'enable_translation': enable_translation,
'enable_embedding': enable_embedding,
'enable_rerank': enable_rerank,
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
168
|
'min_score': min_score,
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
169
170
|
'sort_by': sort_by,
'sort_order': sort_order
|
16c42787
tangwang
feat: implement r...
|
171
|
}
|
be52af70
tangwang
first commit
|
172
|
|
16c42787
tangwang
feat: implement r...
|
173
174
175
176
177
|
context.metadata['feature_flags'] = {
'translation_enabled': enable_translation,
'embedding_enabled': enable_embedding,
'rerank_enabled': enable_rerank
}
|
be52af70
tangwang
first commit
|
178
179
|
# Step 1: Parse query
|
16c42787
tangwang
feat: implement r...
|
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
context.start_stage(RequestContextStage.QUERY_PARSING)
try:
parsed_query = self.query_parser.parse(
query,
generate_vector=enable_embedding,
context=context
)
# Store query analysis results in context
context.store_query_analysis(
original_query=parsed_query.original_query,
normalized_query=parsed_query.normalized_query,
rewritten_query=parsed_query.rewritten_query,
detected_language=parsed_query.detected_language,
translations=parsed_query.translations,
query_vector=parsed_query.query_vector.tolist() if parsed_query.query_vector is not None else None,
domain=parsed_query.domain,
is_simple_query=self.boolean_parser.is_simple_query(parsed_query.rewritten_query)
)
|
be52af70
tangwang
first commit
|
198
|
|
16c42787
tangwang
feat: implement r...
|
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
context.logger.info(
f"查询解析完成 | 原查询: '{parsed_query.original_query}' | "
f"重写后: '{parsed_query.rewritten_query}' | "
f"语言: {parsed_query.detected_language} | "
f"域: {parsed_query.domain} | "
f"向量: {'是' if parsed_query.query_vector is not None else '否'}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"查询解析失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.QUERY_PARSING)
# Step 2: Boolean parsing
context.start_stage(RequestContextStage.BOOLEAN_PARSING)
try:
query_node = None
if self.boolean_parser.is_simple_query(parsed_query.rewritten_query):
# Simple query
query_text = parsed_query.rewritten_query
context.logger.debug(
f"简单查询 | 无布尔表达式",
extra={'reqid': context.reqid, 'uid': context.uid}
)
else:
# Complex boolean query
query_node = self.boolean_parser.parse(parsed_query.rewritten_query)
query_text = parsed_query.rewritten_query
context.store_intermediate_result('query_node', query_node)
context.store_intermediate_result('boolean_ast', str(query_node))
context.logger.info(
f"布尔表达式解析 | AST: {query_node}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"布尔表达式解析失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.BOOLEAN_PARSING)
# Step 3: Query building
context.start_stage(RequestContextStage.QUERY_BUILDING)
try:
es_query = self.query_builder.build_multilang_query(
parsed_query=parsed_query,
query_vector=parsed_query.query_vector if enable_embedding else None,
query_node=query_node,
filters=filters,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
256
|
range_filters=range_filters,
|
16c42787
tangwang
feat: implement r...
|
257
258
259
260
261
|
size=size,
from_=from_,
enable_knn=enable_embedding and parsed_query.query_vector is not None,
min_score=min_score
)
|
be52af70
tangwang
first commit
|
262
|
|
16c42787
tangwang
feat: implement r...
|
263
264
265
266
267
268
269
270
|
# Add SPU collapse if configured
if self.config.spu_config.enabled:
es_query = self.query_builder.add_spu_collapse(
es_query,
self.config.spu_config.spu_field,
self.config.spu_config.inner_hits_size
)
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
271
272
273
274
275
276
277
|
# Add facets for faceted search
if facets:
facet_aggs = self.query_builder.build_facets(facets)
if facet_aggs:
if "aggs" not in es_query:
es_query["aggs"] = {}
es_query["aggs"].update(facet_aggs)
|
16c42787
tangwang
feat: implement r...
|
278
|
|
c86c8237
tangwang
支持聚合。过滤项补充了逻辑,但是有问题
|
279
280
281
282
|
# Add sorting if specified
if sort_by:
es_query = self.query_builder.add_sorting(es_query, sort_by, sort_order)
|
16c42787
tangwang
feat: implement r...
|
283
284
285
286
287
288
289
290
291
292
|
# Extract size and from from body for ES client parameters
body_for_es = {k: v for k, v in es_query.items() if k not in ['size', 'from']}
# Store ES query in context
context.store_intermediate_result('es_query', es_query)
context.store_intermediate_result('es_body_for_search', body_for_es)
context.logger.info(
f"ES查询构建完成 | 大小: {len(str(es_query))}字符 | "
f"KNN: {'是' if enable_embedding and parsed_query.query_vector is not None else '否'} | "
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
293
|
f"分面: {'是' if facets else '否'}",
|
16c42787
tangwang
feat: implement r...
|
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
extra={'reqid': context.reqid, 'uid': context.uid}
)
context.logger.debug(
f"ES查询详情: {es_query}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"ES查询构建失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.QUERY_BUILDING)
# Step 4: Elasticsearch search
context.start_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
try:
es_response = self.es_client.search(
index_name=self.config.es_index_name,
body=body_for_es,
size=size,
from_=from_
|
be52af70
tangwang
first commit
|
318
319
|
)
|
16c42787
tangwang
feat: implement r...
|
320
321
|
# Store ES response in context
context.store_intermediate_result('es_response', es_response)
|
be52af70
tangwang
first commit
|
322
|
|
16c42787
tangwang
feat: implement r...
|
323
324
325
326
327
|
# Extract timing from ES response
es_took = es_response.get('took', 0)
context.logger.info(
f"ES搜索完成 | 耗时: {es_took}ms | "
f"命中数: {es_response.get('hits', {}).get('total', {}).get('value', 0)} | "
|
25d3e81d
tangwang
fix指定sort项时候的bug
|
328
|
f"最高分: {(es_response.get('hits', {}).get('max_score') or 0):.3f}",
|
16c42787
tangwang
feat: implement r...
|
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"ES搜索执行失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.ELASTICSEARCH_SEARCH)
# Step 5: Result processing
context.start_stage(RequestContextStage.RESULT_PROCESSING)
try:
hits = []
raw_hits = []
if 'hits' in es_response and 'hits' in es_response['hits']:
for hit in es_response['hits']['hits']:
raw_hits.append(hit)
result_doc = {
'_id': hit['_id'],
|
25d3e81d
tangwang
fix指定sort项时候的bug
|
353
|
'_score': hit.get('_score') or 0.0,
|
16c42787
tangwang
feat: implement r...
|
354
355
356
|
'_source': hit['_source']
}
|
43f1139f
tangwang
refactor: ES查询结构重...
|
357
358
|
# 应用本地重排(仅当启用时)
if enable_rerank and self.rerank_engine.enabled:
|
25d3e81d
tangwang
fix指定sort项时候的bug
|
359
|
base_score = hit.get('_score') or 0.0
|
16c42787
tangwang
feat: implement r...
|
360
361
|
knn_score = None
|
43f1139f
tangwang
refactor: ES查询结构重...
|
362
363
364
365
366
367
368
369
370
371
372
373
|
# 检查是否使用了KNN(新结构:在function_score内部)
query_section = es_query.get('query', {})
if 'function_score' in query_section:
fs_query = query_section['function_score'].get('query', {})
outer_bool = fs_query.get('bool', {})
inner_bool_list = outer_bool.get('must', [])
if inner_bool_list and 'bool' in inner_bool_list[0]:
inner_should = inner_bool_list[0]['bool'].get('should', [])
if any('knn' in clause for clause in inner_should):
knn_score = base_score * 0.2
custom_score = self.rerank_engine.calculate_score(
|
16c42787
tangwang
feat: implement r...
|
374
375
376
377
378
379
380
381
382
|
hit,
base_score,
knn_score
)
result_doc['_custom_score'] = custom_score
result_doc['_original_score'] = base_score
hits.append(result_doc)
|
43f1139f
tangwang
refactor: ES查询结构重...
|
383
384
|
# 重排序(仅当启用时)
if enable_rerank and self.rerank_engine.enabled:
|
16c42787
tangwang
feat: implement r...
|
385
386
|
hits.sort(key=lambda x: x.get('_custom_score', x['_score']), reverse=True)
context.logger.info(
|
43f1139f
tangwang
refactor: ES查询结构重...
|
387
|
f"本地重排完成 | 使用RerankEngine",
|
16c42787
tangwang
feat: implement r...
|
388
|
extra={'reqid': context.reqid, 'uid': context.uid}
|
be52af70
tangwang
first commit
|
389
|
)
|
be52af70
tangwang
first commit
|
390
|
|
16c42787
tangwang
feat: implement r...
|
391
392
393
|
# Store intermediate results in context
context.store_intermediate_result('raw_hits', raw_hits)
context.store_intermediate_result('processed_hits', hits)
|
be52af70
tangwang
first commit
|
394
|
|
16c42787
tangwang
feat: implement r...
|
395
396
397
398
399
400
|
# Extract total and max_score
total = es_response.get('hits', {}).get('total', {})
if isinstance(total, dict):
total_value = total.get('value', 0)
else:
total_value = total
|
be52af70
tangwang
first commit
|
401
|
|
25d3e81d
tangwang
fix指定sort项时候的bug
|
402
|
max_score = es_response.get('hits', {}).get('max_score') or 0.0
|
be52af70
tangwang
first commit
|
403
|
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
404
405
406
407
408
409
|
# Standardize facets
standardized_facets = self._standardize_facets(
es_response.get('aggregations', {}),
facets,
filters
)
|
be52af70
tangwang
first commit
|
410
|
|
16c42787
tangwang
feat: implement r...
|
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
context.logger.info(
f"结果处理完成 | 返回: {len(hits)}条 | 总计: {total_value}条 | "
f"重排序: {'是' if enable_rerank else '否'}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
except Exception as e:
context.set_error(e)
context.logger.error(
f"结果处理失败 | 错误: {str(e)}",
extra={'reqid': context.reqid, 'uid': context.uid}
)
raise
finally:
context.end_stage(RequestContextStage.RESULT_PROCESSING)
|
be52af70
tangwang
first commit
|
426
|
|
16c42787
tangwang
feat: implement r...
|
427
428
429
|
# End total timing and build result
total_duration = context.end_stage(RequestContextStage.TOTAL)
context.performance_metrics.total_duration = total_duration
|
be52af70
tangwang
first commit
|
430
|
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
# Collect debug information if requested
debug_info = None
if debug:
debug_info = {
"query_analysis": {
"original_query": context.query_analysis.original_query,
"normalized_query": context.query_analysis.normalized_query,
"rewritten_query": context.query_analysis.rewritten_query,
"detected_language": context.query_analysis.detected_language,
"translations": context.query_analysis.translations,
"has_vector": context.query_analysis.query_vector is not None,
"is_simple_query": context.query_analysis.is_simple_query,
"boolean_ast": context.get_intermediate_result('boolean_ast'),
"domain": context.query_analysis.domain
},
"es_query": context.get_intermediate_result('es_query', {}),
"es_response": {
"took_ms": es_response.get('took', 0),
"total_hits": total_value,
"max_score": max_score,
"shards": es_response.get('_shards', {})
},
"feature_flags": context.metadata.get('feature_flags', {}),
"stage_timings": {
k: round(v, 2) for k, v in context.performance_metrics.stage_timings.items()
},
"search_params": context.metadata.get('search_params', {})
}
|
be52af70
tangwang
first commit
|
460
461
462
463
464
|
# Build result
result = SearchResult(
hits=hits,
total=total_value,
max_score=max_score,
|
16c42787
tangwang
feat: implement r...
|
465
|
took_ms=int(total_duration),
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
466
|
facets=standardized_facets,
|
1f071951
tangwang
补充调试信息,记录包括各个阶段的 ...
|
467
468
|
query_info=parsed_query.to_dict(),
debug_info=debug_info
|
be52af70
tangwang
first commit
|
469
470
|
)
|
16c42787
tangwang
feat: implement r...
|
471
472
|
# Log complete performance summary
context.log_performance_summary()
|
be52af70
tangwang
first commit
|
473
474
475
476
477
478
479
|
return result
def search_by_image(
self,
image_url: str,
size: int = 10,
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
480
481
|
filters: Optional[Dict[str, Any]] = None,
range_filters: Optional[Dict[str, Any]] = None
|
be52af70
tangwang
first commit
|
482
483
|
) -> SearchResult:
"""
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
484
|
Search by image similarity (重构版).
|
be52af70
tangwang
first commit
|
485
486
487
488
|
Args:
image_url: URL of query image
size: Number of results
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
489
490
|
filters: Exact match filters
range_filters: Range filters for numeric fields
|
be52af70
tangwang
first commit
|
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
Returns:
SearchResult object
"""
if not self.image_embedding_field:
raise ValueError("Image embedding field not configured")
# Generate image embedding
from embeddings import CLIPImageEncoder
image_encoder = CLIPImageEncoder()
image_vector = image_encoder.encode_image_from_url(image_url)
if image_vector is None:
raise ValueError(f"Failed to encode image: {image_url}")
# Build KNN query
es_query = {
"size": size,
"knn": {
"field": self.image_embedding_field,
"query_vector": image_vector.tolist(),
"k": size,
"num_candidates": size * 10
}
}
|
13377199
tangwang
接口优化
|
517
518
519
520
521
522
|
# Add _source filtering if source_fields are configured
if self.config.query_config.source_fields:
es_query["_source"] = {
"includes": self.config.query_config.source_fields
}
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
523
524
525
526
527
528
529
|
if filters or range_filters:
filter_clauses = self.query_builder._build_filters(filters, range_filters)
if filter_clauses:
es_query["query"] = {
"bool": {
"filter": filter_clauses
}
|
be52af70
tangwang
first commit
|
530
|
}
|
be52af70
tangwang
first commit
|
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
# Execute search
es_response = self.es_client.search(
index_name=self.config.es_index_name,
body=es_query,
size=size
)
# Process results (similar to text search)
hits = []
if 'hits' in es_response and 'hits' in es_response['hits']:
for hit in es_response['hits']['hits']:
hits.append({
'_id': hit['_id'],
'_score': hit['_score'],
'_source': hit['_source']
})
total = es_response.get('hits', {}).get('total', {})
if isinstance(total, dict):
total_value = total.get('value', 0)
else:
total_value = total
return SearchResult(
hits=hits,
total=total_value,
|
25d3e81d
tangwang
fix指定sort项时候的bug
|
558
|
max_score=es_response.get('hits', {}).get('max_score') or 0.0,
|
be52af70
tangwang
first commit
|
559
560
561
562
|
took_ms=es_response.get('took', 0),
query_info={'image_url': image_url, 'search_type': 'image_similarity'}
)
|
b926f678
tangwang
多语言查询
|
563
564
565
566
567
568
569
570
571
|
def get_domain_summary(self) -> Dict[str, Any]:
"""
Get summary of all configured domains.
Returns:
Dictionary with domain information
"""
return self.query_builder.get_domain_summary()
|
be52af70
tangwang
first commit
|
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
def get_document(self, doc_id: str) -> Optional[Dict[str, Any]]:
"""
Get single document by ID.
Args:
doc_id: Document ID
Returns:
Document or None if not found
"""
try:
response = self.es_client.client.get(
index=self.config.es_index_name,
id=doc_id
)
return response.get('_source')
except Exception as e:
print(f"[Searcher] Failed to get document {doc_id}: {e}")
return None
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
591
592
593
594
|
def _standardize_facets(
self,
es_aggregations: Dict[str, Any],
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
595
|
facet_configs: Optional[List[Union[str, Any]]],
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
596
597
598
599
600
601
602
|
current_filters: Optional[Dict[str, Any]]
) -> Optional[List[FacetResult]]:
"""
将 ES 聚合结果转换为标准化的分面格式(返回 Pydantic 模型)。
Args:
es_aggregations: ES 原始聚合结果
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
603
|
facet_configs: 分面配置列表(str 或 FacetConfig)
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
current_filters: 当前应用的过滤器
Returns:
标准化的分面结果列表(FacetResult 对象)
"""
if not es_aggregations or not facet_configs:
return None
standardized_facets: List[FacetResult] = []
for config in facet_configs:
# 解析配置
if isinstance(config, str):
field = config
facet_type = "terms"
else:
|
ff5325fa
tangwang
修复:直接在 Searcher 层...
|
620
621
622
|
# FacetConfig 对象
field = config.field
facet_type = config.type
|
6aa246be
tangwang
问题:Pydantic 应该能自动...
|
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
agg_name = f"{field}_facet"
if agg_name not in es_aggregations:
continue
agg_result = es_aggregations[agg_name]
# 获取当前字段的选中值
selected_values = set()
if current_filters and field in current_filters:
filter_value = current_filters[field]
if isinstance(filter_value, list):
selected_values = set(filter_value)
else:
selected_values = {filter_value}
# 转换 buckets 为 FacetValue 对象
facet_values: List[FacetValue] = []
if 'buckets' in agg_result:
for bucket in agg_result['buckets']:
value = bucket.get('key')
count = bucket.get('doc_count', 0)
facet_values.append(FacetValue(
value=value,
label=str(value),
count=count,
selected=value in selected_values
))
# 构建 FacetResult 对象
facet_result = FacetResult(
field=field,
label=self._get_field_label(field),
type=facet_type,
values=facet_values
)
standardized_facets.append(facet_result)
return standardized_facets if standardized_facets else None
def _get_field_label(self, field: str) -> str:
"""获取字段的显示标签"""
# 从配置中获取字段标签
for field_config in self.config.fields:
if field_config.name == field:
# 尝试获取 label 属性
return getattr(field_config, 'label', field)
# 如果没有配置,返回字段名
return field
|